
CIS 530: Text
Processing Wrap up
& Logistic Regression
MONDAYS AND WEDNESDAYS 1:30-3PM
3401 WALNUT, ROOM 401B ANNENBERG 110
COMPUTATIONAL-LINGUISTICS-CLASS.ORG

PROFESSOR CALLISON-BURCH

http://computational-linguistics-class.org/

Reminders

QUIZ 1 IS DUE TONIGHT
BEFORE 11:59PM.

HELP US HELP YOU ON
PIAZZA

READ TEXTBOOK
CHAPTER 5

Wrap-up:
Text Processing
READ: JURAFSKY AND MARTIN CHAPTER 2

WORD NORMALIZATION AND STEMMING

Recap: Normalization
Need to “normalize” terms

◦ Information Retrieval: indexed text & query terms must have same form.
◦ We want to match U.S.A. and USA

We implicitly define equivalence classes of terms
◦ e.g., deleting periods in a term

Alternative: asymmetric expansion:
◦ Enter: window Search: window, windows
◦ Enter: windows Search: Windows, windows, window
◦ Enter: Windows Search: Windows

Potentially more powerful, but less efficient

Issues in
Tokenization

Finland’s capital ®
Finland Finlands Finland’s ?

what’re, I’m, isn’t ® What
are, I am, is not

Hewlett-Packard ®
Hewlett Packard ?

state-of-the-art ® state
of the art ?

Lowercase ® lower-
case lowercase lower case ?

San Francisco ® one token or
two?

m.p.h., PhD. ® ??

Tokenization: language issues

French
◦ L'ensemble ® one token or two?

◦ L ? L’ ? Le ?
◦ Want l’ensemble to match with un ensemble

German noun compounds are not segmented
◦ Lebensversicherungsgesellschaftsangestellter
◦ ‘life insurance company employee’
◦ German information retrieval needs compound splitter

Tokenization: language issues

Chinese and Japanese no spaces between words:
◦ 莎拉波娃现在居住在美国东南部的佛罗里达。
◦ 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达
◦ Sharapova now lives in US southeastern Florida

Further complicated in Japanese, with multiple alphabets intermingled
◦ Dates/amounts in multiple formats

フォーチュン500社は情報不足のため時間あた$500K(約6,000万円)

Katakana Hiragana Kanji Romaji
End-user can express query entirely in hiragana!

Word
Tokenization
in Chinese

Also called Word Segmentation

Chinese words are composed of characters
◦ Characters are generally 1 syllable and 1

morpheme.
◦ Average word is 2.4 characters long.

Standard baseline segmentation algorithm:
◦ Maximum Matching (also called Greedy)

Maximum
Matching
Word
Segmentation
Algorithm

Given a wordlist of Chinese, and a string:

1) Start a pointer at the beginning of the
string

2) Find the longest word in dictionary that
matches the string starting at pointer

3) Move the pointer over the word in string

4) Go to 2

Max-match segmentation
illustration

Thecatinthehat
Thetabledownthere

Doesn’t generally work in English!

But works surprisingly well in Chinese
◦ 莎拉波娃现在居住在美国东南部的佛罗里达。
◦ 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达

Modern probabilistic segmentation algorithms even better

the table down there

the cat in the hat

theta bled own there

Byte-Pair Encoding for
Tokenization
Modern tokenizers use data to automatically determine what size
tokens we should use, rather than relying on whitespace, or max-matc

Sometimes we want a space delimited words like spinach to be a token

Other times we might want multi-word units like New York Times

Sometimes we want subword units like morphemes –est or –er

Subword units are helpful for dealing with unknown words.

Byte-Pair Encoding for
Tokenization
The BPE algorithm tokenizes text, such that most tokens are words, but
some tokens are frequent morphemes or other subwords like –er.

Unseen word can be represented by combining the parts.

BPE was originally used for text compression, but was repurposed for
tokenization in 2016 by Rico Sennrich, Barry Haddow, and Alexanra
Birch to translate rare and unseen words.

Start with a set of symbols that is the set of characters, plus an end of
word symbol.

Byte-Pair Encoding for
Tokenization
Start with a set of symbols that is the set of characters, plus an end of
word symbol.

At each step, count the number of symbol pairs, find the most frequent
pair (‘A’, ‘B’), and replace it with the new merged symbol (‘AB’).

Repeat this merge step k times.

The resulting symbol set will consist of the original characters plus k
new symbols.

2.4 • TEXT NORMALIZATION 19

i m p o r t re , c o l l e c t i o n s

d e f g e t s t a t s (vocab) :
p a i r s = c o l l e c t i o n s . d e f a u l t d i c t (i n t)
f o r word , f r e q i n vocab . i t e m s () :

symbols = word . s p l i t ()
f o r i i n r a n g e (l e n (symbols)�1) :

p a i r s [symbols [i] , symbols [i + 1]] += f r e q
r e t u r n p a i r s

d e f merge vocab (p a i r , v i n) :
v o u t = {}
bigram = r e . e s c a p e (’ ’ . j o i n (p a i r))
p = r e . compi l e (r ’ (?<!\S) ’ + bigram + r ’ (? !\ S) ’)
f o r word i n v i n :

w out = p . sub (’ ’ . j o i n (p a i r) , word)
v o u t [w out] = v i n [word]

r e t u r n v o u t

vocab = { ’ l o w </w>’ : 5 , ’ l o w e s t </w>’ : 2 ,
’ n e w e r </w>’ : 6 , ’w i d e r </w>’ : 3 , ’ n e w </w>’ : 2}

num merges = 8

f o r i i n r a n g e (num merges) :
p a i r s = g e t s t a t s (vocab)
b e s t = max (p a i r s , key= p a i r s . g e t)
vocab = merge vocab (b e s t , vocab)
p r i n t (b e s t)

Figure 2.12 Python code for BPE learning algorithm from Sennrich et al. (2016).

beginning of a string. It chooses the longest token in the wordpiece vocabulary that
matches the input at the current position, and moves the pointer past that word in the
string. The algorithm is then applied again starting from the new pointer position.

function MAXMATCH(string, dictionary) returns list of tokens T

if string is empty
return empty list

for i length(sentence) downto 1
firstword = first i chars of sentence
remainder = rest of sentence
if InDictionary(firstword, dictionary)

return list(firstword, MaxMatch(remainder,dictionary))

Figure 2.13 The MaxMatch (or ‘greedy longest-first’) algorithm for word tokenization us-
ing wordpiece or other vocabularies. Assumes that all strings can be successfully tokenized
with the given dictionary.

Thus given the token intention and the dictionary:

["in", "tent","intent","##tent", "##tention", "##tion", "#ion"]

the BERT tokenizer would choose intent (because it is longer than in, and then
##ion to complete the string, resulting in the tokenization ["intent" "##ion"].
The BERT tokenizer applied to the string unwanted running will produce:

(2.8) ["un", "##want", "##ed", "runn", "##ing"]

Another tokenization algorithm is called SentencePiece (Kudo and Richardson,SentencePiece

2.4 • TEXT NORMALIZATION 17

Unknown words are particularly relevant for machine learning systems. As we will
see in the next chapter, machine learning systems often learn some facts about words
in one corpus (a training corpus) and then use these facts to make decisions about
a separate test corpus and its words. Thus if our training corpus contains, say the
words low, and lowest, but not lower, but then the word lower appears in our test
corpus, our system will not know what to do with it.

A solution to this problem is to use a kind of tokenization in which most tokens
are words, but some tokens are frequent morphemes or other subwords like -er, so
that an unseen word can be represented by combining the parts.

The simplest such algorithm is byte-pair encoding, or BPE (Sennrich et al.,BPE
2016). Byte-pair encoding is based on a method for text compression (Gage, 1994),
but here we use it for tokenization instead. The intuition of the algorithm is to
iteratively merge frequent pairs of characters,

The algorithm begins with the set of symbols equal to the set of characters. Each
word is represented as a sequence of characters plus a special end-of-word symbol

. At each step of the algorithm, we count the number of symbol pairs, find the
most frequent pair (‘A’, ‘B’), and replace it with the new merged symbol (‘AB’). We
continue to count and merge, creating new longer and longer character strings, until
we’ve done k merges; k is a parameter of the algorithm. The resulting symbol set
will consist of the original set of characters plus k new symbols.

The algorithm is run inside words (we don’t merge across word boundaries).
For this reason, the algorithm can take as input a dictionary of words together with
counts. Consider the following tiny input dictionary with counts for each word,
which would have the starting vocabulary of 11 letters:

dictionary vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

We first count all pairs of symbols: the most frequent is the pair r because
it occurs in newer (frequency of 6) and wider (frequency of 3) for a total of 9 oc-
currences. We then merge these symbols, treating r as one symbol, and count
again:

dictionary vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, r
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

Now the most frequent pair is e r , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

dictionary vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, r , er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next e w (total count of 8) get merged to ew:

2.4 • TEXT NORMALIZATION 17

Unknown words are particularly relevant for machine learning systems. As we will
see in the next chapter, machine learning systems often learn some facts about words
in one corpus (a training corpus) and then use these facts to make decisions about
a separate test corpus and its words. Thus if our training corpus contains, say the
words low, and lowest, but not lower, but then the word lower appears in our test
corpus, our system will not know what to do with it.

A solution to this problem is to use a kind of tokenization in which most tokens
are words, but some tokens are frequent morphemes or other subwords like -er, so
that an unseen word can be represented by combining the parts.

The simplest such algorithm is byte-pair encoding, or BPE (Sennrich et al.,BPE
2016). Byte-pair encoding is based on a method for text compression (Gage, 1994),
but here we use it for tokenization instead. The intuition of the algorithm is to
iteratively merge frequent pairs of characters,

The algorithm begins with the set of symbols equal to the set of characters. Each
word is represented as a sequence of characters plus a special end-of-word symbol

. At each step of the algorithm, we count the number of symbol pairs, find the
most frequent pair (‘A’, ‘B’), and replace it with the new merged symbol (‘AB’). We
continue to count and merge, creating new longer and longer character strings, until
we’ve done k merges; k is a parameter of the algorithm. The resulting symbol set
will consist of the original set of characters plus k new symbols.

The algorithm is run inside words (we don’t merge across word boundaries).
For this reason, the algorithm can take as input a dictionary of words together with
counts. Consider the following tiny input dictionary with counts for each word,
which would have the starting vocabulary of 11 letters:

dictionary vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

We first count all pairs of symbols: the most frequent is the pair r because
it occurs in newer (frequency of 6) and wider (frequency of 3) for a total of 9 oc-
currences. We then merge these symbols, treating r as one symbol, and count
again:

dictionary vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, r
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

Now the most frequent pair is e r , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

dictionary vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, r , er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next e w (total count of 8) get merged to ew:

2.4 • TEXT NORMALIZATION 17

Unknown words are particularly relevant for machine learning systems. As we will
see in the next chapter, machine learning systems often learn some facts about words
in one corpus (a training corpus) and then use these facts to make decisions about
a separate test corpus and its words. Thus if our training corpus contains, say the
words low, and lowest, but not lower, but then the word lower appears in our test
corpus, our system will not know what to do with it.

A solution to this problem is to use a kind of tokenization in which most tokens
are words, but some tokens are frequent morphemes or other subwords like -er, so
that an unseen word can be represented by combining the parts.

The simplest such algorithm is byte-pair encoding, or BPE (Sennrich et al.,BPE
2016). Byte-pair encoding is based on a method for text compression (Gage, 1994),
but here we use it for tokenization instead. The intuition of the algorithm is to
iteratively merge frequent pairs of characters,

The algorithm begins with the set of symbols equal to the set of characters. Each
word is represented as a sequence of characters plus a special end-of-word symbol

. At each step of the algorithm, we count the number of symbol pairs, find the
most frequent pair (‘A’, ‘B’), and replace it with the new merged symbol (‘AB’). We
continue to count and merge, creating new longer and longer character strings, until
we’ve done k merges; k is a parameter of the algorithm. The resulting symbol set
will consist of the original set of characters plus k new symbols.

The algorithm is run inside words (we don’t merge across word boundaries).
For this reason, the algorithm can take as input a dictionary of words together with
counts. Consider the following tiny input dictionary with counts for each word,
which would have the starting vocabulary of 11 letters:

dictionary vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

We first count all pairs of symbols: the most frequent is the pair r because
it occurs in newer (frequency of 6) and wider (frequency of 3) for a total of 9 oc-
currences. We then merge these symbols, treating r as one symbol, and count
again:

dictionary vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, r
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

Now the most frequent pair is e r , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

dictionary vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, r , er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next e w (total count of 8) get merged to ew:

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

dictionary vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, r , er , ew
2 l o w e s t
6 n ew er
3 w i d er
2 n ew

If we continue, the next merges are:

Merge Current Vocabulary
(n, ew) , d, e, i, l, n, o, r, s, t, w, r , er , ew, new
(l, o’ , d, e, i, l, n, o, r, s, t, w, r , er , ew, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, r , er , ew, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, r , er , ew, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, r , er , ew, new, lo, low, newer , low

When we need to tokenize a test sentence, we just run the merges we have
learned, greedily, in the order we learned them, on the test data. (Thus the fre-
quencies in the test data don’t play a role, just the frequencies in the training data).
So first we segment each test sentence word into characters. Then we apply the first
rule: replace every instance of r in the test corpus with r , and then the second
rule: replace every instance of e r in the test corpus with er , and so on. By the
end, if the test corpus contained the word n e w e r , it would be tokenized as a
full word. But a new (unknown) word like l o w e r would be merged into the
two tokens low er .

Of course in real algorithms BPE is run with many thousands of merges on a
very large input dictionary. The result is that most words will be represented as
full symbols, and only the very rare words (and unknown words) will have to be
represented by their parts. The full BPE learning algorithm is given in Fig. 2.12.

Wordpiece and Greedy Tokenization

There are some alternatives to byte pair encoding for inducing tokens. Like the BPE
algorithm, the wordpiece algorithm starts with some simple tokenization (such aswordpiece

by whitespace) into rough words, and then breaks those rough word tokens into
subword tokens. The wordpiece model differs from BPE only in that the specialwordpiece

word-boundary token appears at the beginning of words rather than at the end,
and in the way it merges pairs. Rather than merging the pairs that are most frequent,
wordpiece instead merges the pairs that minimizes the language model likelihood of
the training data. We’ll introduce these concepts in the next chapter, but to simplify,
the wordpiece model chooses the two tokens to combine that would give the training
corpus the highest probability (Wu et al., 2016).

In the wordpiece segmenter used in BERT (Devlin et al., 2019), like other word-
piece variants, an input sentence or string is first split by some simple basic tokenizer
(like whitespace) into a series of rough word tokens. But then instead of using a
word boundary token, word-initial subwords are distinguished from those that do
not start words by marking internal subwords with special symbols ##, so that we
might split unaffable into ["un", "\#\#aff", "\#\#able"]. Then each word
token string is tokenized using a greedy longest-match-first algorithm. This is dif-
ferent than the decoding algorithm we introduced for BPE, which runs the merges
on the test sentence in the same order they were learned from the training set.

Greedy longest-match-first decoding is sometimes called maximum matchingmaximum
matching

or MaxMatch. The maximum matching algorithm (Fig. 2.13) is given a vocabu-
lary (a learned list of wordpiece tokens) and a string and starts by pointing at the

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

dictionary vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, r , er , ew
2 l o w e s t
6 n ew er
3 w i d er
2 n ew

If we continue, the next merges are:

Merge Current Vocabulary
(n, ew) , d, e, i, l, n, o, r, s, t, w, r , er , ew, new
(l, o’ , d, e, i, l, n, o, r, s, t, w, r , er , ew, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, r , er , ew, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, r , er , ew, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, r , er , ew, new, lo, low, newer , low

When we need to tokenize a test sentence, we just run the merges we have
learned, greedily, in the order we learned them, on the test data. (Thus the fre-
quencies in the test data don’t play a role, just the frequencies in the training data).
So first we segment each test sentence word into characters. Then we apply the first
rule: replace every instance of r in the test corpus with r , and then the second
rule: replace every instance of e r in the test corpus with er , and so on. By the
end, if the test corpus contained the word n e w e r , it would be tokenized as a
full word. But a new (unknown) word like l o w e r would be merged into the
two tokens low er .

Of course in real algorithms BPE is run with many thousands of merges on a
very large input dictionary. The result is that most words will be represented as
full symbols, and only the very rare words (and unknown words) will have to be
represented by their parts. The full BPE learning algorithm is given in Fig. 2.12.

Wordpiece and Greedy Tokenization

There are some alternatives to byte pair encoding for inducing tokens. Like the BPE
algorithm, the wordpiece algorithm starts with some simple tokenization (such aswordpiece

by whitespace) into rough words, and then breaks those rough word tokens into
subword tokens. The wordpiece model differs from BPE only in that the specialwordpiece

word-boundary token appears at the beginning of words rather than at the end,
and in the way it merges pairs. Rather than merging the pairs that are most frequent,
wordpiece instead merges the pairs that minimizes the language model likelihood of
the training data. We’ll introduce these concepts in the next chapter, but to simplify,
the wordpiece model chooses the two tokens to combine that would give the training
corpus the highest probability (Wu et al., 2016).

In the wordpiece segmenter used in BERT (Devlin et al., 2019), like other word-
piece variants, an input sentence or string is first split by some simple basic tokenizer
(like whitespace) into a series of rough word tokens. But then instead of using a
word boundary token, word-initial subwords are distinguished from those that do
not start words by marking internal subwords with special symbols ##, so that we
might split unaffable into ["un", "\#\#aff", "\#\#able"]. Then each word
token string is tokenized using a greedy longest-match-first algorithm. This is dif-
ferent than the decoding algorithm we introduced for BPE, which runs the merges
on the test sentence in the same order they were learned from the training set.

Greedy longest-match-first decoding is sometimes called maximum matchingmaximum
matching

or MaxMatch. The maximum matching algorithm (Fig. 2.13) is given a vocabu-
lary (a learned list of wordpiece tokens) and a string and starts by pointing at the

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

dictionary vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, r , er , ew
2 l o w e s t
6 n ew er
3 w i d er
2 n ew

If we continue, the next merges are:

Merge Current Vocabulary
(n, ew) , d, e, i, l, n, o, r, s, t, w, r , er , ew, new
(l, o’ , d, e, i, l, n, o, r, s, t, w, r , er , ew, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, r , er , ew, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, r , er , ew, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, r , er , ew, new, lo, low, newer , low

When we need to tokenize a test sentence, we just run the merges we have
learned, greedily, in the order we learned them, on the test data. (Thus the fre-
quencies in the test data don’t play a role, just the frequencies in the training data).
So first we segment each test sentence word into characters. Then we apply the first
rule: replace every instance of r in the test corpus with r , and then the second
rule: replace every instance of e r in the test corpus with er , and so on. By the
end, if the test corpus contained the word n e w e r , it would be tokenized as a
full word. But a new (unknown) word like l o w e r would be merged into the
two tokens low er .

Of course in real algorithms BPE is run with many thousands of merges on a
very large input dictionary. The result is that most words will be represented as
full symbols, and only the very rare words (and unknown words) will have to be
represented by their parts. The full BPE learning algorithm is given in Fig. 2.12.

Wordpiece and Greedy Tokenization

There are some alternatives to byte pair encoding for inducing tokens. Like the BPE
algorithm, the wordpiece algorithm starts with some simple tokenization (such aswordpiece

by whitespace) into rough words, and then breaks those rough word tokens into
subword tokens. The wordpiece model differs from BPE only in that the specialwordpiece

word-boundary token appears at the beginning of words rather than at the end,
and in the way it merges pairs. Rather than merging the pairs that are most frequent,
wordpiece instead merges the pairs that minimizes the language model likelihood of
the training data. We’ll introduce these concepts in the next chapter, but to simplify,
the wordpiece model chooses the two tokens to combine that would give the training
corpus the highest probability (Wu et al., 2016).

In the wordpiece segmenter used in BERT (Devlin et al., 2019), like other word-
piece variants, an input sentence or string is first split by some simple basic tokenizer
(like whitespace) into a series of rough word tokens. But then instead of using a
word boundary token, word-initial subwords are distinguished from those that do
not start words by marking internal subwords with special symbols ##, so that we
might split unaffable into ["un", "\#\#aff", "\#\#able"]. Then each word
token string is tokenized using a greedy longest-match-first algorithm. This is dif-
ferent than the decoding algorithm we introduced for BPE, which runs the merges
on the test sentence in the same order they were learned from the training set.

Greedy longest-match-first decoding is sometimes called maximum matchingmaximum
matching

or MaxMatch. The maximum matching algorithm (Fig. 2.13) is given a vocabu-
lary (a learned list of wordpiece tokens) and a string and starts by pointing at the

Basic Text
Processing

WORD NORMALIZATION AND STEMMING

Normalization
Need to “normalize” terms

◦ Information Retrieval: indexed text & query terms must have same form.
◦ We want to match U.S.A. and USA

We implicitly define equivalence classes of terms
◦ e.g., deleting periods in a term

Alternative: asymmetric expansion:
◦ Enter: window Search: window, windows
◦ Enter: windows Search: Windows, windows, window
◦ Enter: Windows Search: Windows

Potentially more powerful, but less efficient

Case folding
Applications like IR: reduce all letters to lower case
◦ Since users tend to use lower case
◦ Possible exception: upper case in mid-sentence?

◦ e.g., General Motors
◦ Fed vs. fed
◦ SAIL vs. sail

For sentiment analysis, MT, Information extraction
◦ Case is helpful (US versus us is important)

Lemmatization
Reduce inflections or variant forms to base form

◦ am, are, is ® be
◦ car, cars, car's, cars' ® car

the boy's cars are different colors ® the boy car be different color
Lemmatization: have to find correct dictionary headword form

Machine translation
◦ Spanish quiero (‘I want’), quieres (‘you want’) same lemma as querer ‘want’

Morphology
Morphemes:
◦ The small meaningful units that make up words
◦ Stems: The core meaning-bearing units
◦ Affixes: Bits and pieces that adhere to stems
◦ Often with grammatical functions

Stemming
Reduce terms to their stems in information retrieval

Stemming is crude chopping of affixes
◦ language dependent
◦ e.g., automate(s), automatic, automation all reduced to automat.

for example compressed
and compression are both
accepted as equivalent to
compress.

for exampl compress and
compress ar both accept
as equival to compress

Porter’s algorithm
The most common English
stemmer

Step 1a
sses ® ss caresses ® caress
ies ® i ponies ® poni
ss ® ss caress ® caress
s ® ø cats ® cat

Step 1b
(*v*)ing ® ø walking ® walk

sing ® sing
(*v*)ed ® ø plastered ® plaster

…

Step 2 (for long stems)
ational® ate relational® relate
izer® ize digitizer ® digitize
ator® ate operator ® operate
…

Step 3 (for longer stems)
al ® ø revival ® reviv
able ® ø adjustable ® adjust
ate ® ø activate ® activ
…

Viewing morphology in a corpus
Why only strip –ing if there is a vowel?

28

(*v*)ing ® ø walking ® walk
sing ® sing

Viewing morphology in a corpus
Why only strip –ing if there is a vowel?

(*v*)ing ® ø walking ® walk
sing ® sing

29

29

tr -sc 'A-Za-z' '\n' < shakes.txt | grep ’ing$' | sort | uniq -c | sort –nr

tr -sc 'A-Za-z' '\n' < shakes.txt | grep '[aeiou].*ing$' | sort | uniq -c | sort –nr

548 being
541 nothing
152 something
145 coming
130 morning
122 having
120 living
117 loving
116 Being
102 going

1312 King
548 being
541 nothing
388 king
375 bring
358 thing
307 ring
152 something
145 coming
130 morning

Dealing with complex morphology is
sometimes necessary

Some languages requires complex morpheme segmentation
◦ Turkish
◦ Uygarlastiramadiklarimizdanmissinizcasina
◦ `(behaving) as if you are among those whom we could not civilize’
◦ Uygar `civilized’ + las `become’

+ tir `cause’ + ama `not able’
+ dik `past’ + lar ‘plural’
+ imiz ‘p1pl’ + dan ‘abl’
+ mis ‘past’ + siniz ‘2pl’ + casina ‘as if’

Basic Text
Processing

SENTENCE SEGMENTATION AND DECISION TREES

Sentence
Segmentation

!, ? are relatively unambiguous

Period “.” is quite ambiguous
◦ Sentence boundary
◦ Abbreviations like Inc. or Dr.
◦ Numbers like .02% or 4.3

Build a binary classifier
◦ Looks at a “.”
◦ Decides EndOfSentence/NotEndOfSentence
◦ Classifiers: hand-written rules, regular

expressions, or machine-learning

Determining if a word is end-of-sentence: a Decision Tree

More sophisticated decision tree features

Case of word with “.”: Upper, Lower, Cap, Number

Case of word after “.”: Upper, Lower, Cap, Number

Numeric features
◦ Length of word with “.”
◦ Probability(word with “.” occurs at end-of-s)
◦ Probability(word after “.” occurs at beginning-of-s)

Implementing Decision Trees

A decision tree is just an if-then-else statement

The interesting research is choosing the features

Setting up the structure is often too hard to do by hand
◦ Hand-building only possible for very simple features, domains

◦ For numeric features, it’s too hard to pick each threshold

◦ Instead, structure usually learned by machine learning from a training
corpus

Decision Trees and other classifiers

We can think of the questions in a decision tree

As features that could be exploited by any kind of classifier
◦ Logistic regression
◦ SVM
◦ Neural Nets
◦ etc.

Logistic
Regression
JURAFSKY AND MARTIN CHAPTER 5

Generative v. Discriminative
Classifiers and cats v. dogs
Naive Bayes is a generative classifier

Logistic regression is a is a discriminiative classifier

A (possibly apocryphal) tale in artificial intelligence tells about
researchers training a neural network to detect tanks in photographs for
a DARPA project.

They apparently succeed. Great let’s deploy it!
Oops! It didn’t work as well as we thought it would.

Later they realized the photographs had been collected under specific
conditions for tanks/non-tanks and the classifier had simply learned to
distinguish between the time of day.

Tanks v. no tanks

Generative v. Discriminative
Classifiers
Naïve Bayes doesn’t directly
compute P(c|d). Instead it
computes it using two terms:

A generative model uses the likelihood term, which expresses how to
generate the features of a document if we knew it was of class c.

A discriminative model attempts to directly compute P(c|d).
It may learn to assign a high weight to document features that directly
improve its ability to discriminate between classes

Unlike the generative model, good paramters estimates for a
discriminative model don’t help it generate an example of one of the
classes.

2 CHAPTER 5 • LOGISTIC REGRESSION

More formally, recall that the naive Bayes assigns a class c to a document d not
by directly computing P(c|d) but by computing a likelihood and a prior

ĉ = argmax
c2C

likelihoodz }| {
P(d|c)

prior
z}|{
P(c) (5.1)

A generative model like naive Bayes makes use of this likelihood term, whichgenerative
model

expresses how to generate the features of a document if we knew it was of class c.
By contrast a discriminative model in this text categorization scenario attemptsdiscriminative

model
to directly compute P(c|d). Perhaps it will learn to assign a high weight to document
features that directly improve its ability to discriminate between possible classes,
even if it couldn’t generate an example of one of the classes.

Components of a probabilistic machine learning classifier: Like naive Bayes,
logistic regression is a probabilistic classifier that makes use of supervised machine
learning. Machine learning classifiers require a training corpus of M input/output
pairs (x(i),y(i)). (We’ll use superscripts in parentheses to refer to individual instances
in the training set—for sentiment classification each instance might be an individual
document to be classified). A machine learning system for classification then has
four components:

1. A feature representation of the input. For each input observation x(i), this
will be a vector of features [x1,x2, ...,xn]. We will generally refer to feature
i for input x(j) as x(j)

i , sometimes simplified as xi, but we will also see the
notation fi, fi(x), or, for multiclass classification, fi(c,x).

2. A classification function that computes ŷ, the estimated class, via p(y|x). In
the next section we will introduce the sigmoid and softmax tools for classifi-
cation.

3. An objective function for learning, usually involving minimizing error on
training examples. We will introduce the cross-entropy loss function

4. An algorithm for optimizing the objective function. We introduce the stochas-
tic gradient descent algorithm.

Logistic regression has two phases:

training: we train the system (specifically the weights w and b) using stochastic
gradient descent and the cross-entropy loss.

test: Given a test example x we compute p(y|x) and return the higher probability
label y = 1 or y = 0.

5.1 Classification: the sigmoid

The goal of binary logistic regression is to train a classifier that can make a binary
decision about the class of a new input observation. Here we introduce the sigmoid
classifier that will help us make this decision.

Consider a single input observation x, which we will represent by a vector of
features [x1,x2, ...,xn] (we’ll show sample features in the next subsection). The clas-
sifier output y can be 1 (meaning the observation is a member of the class) or 0
(the observation is not a member of the class). We want to know the probability
P(y = 1|x) that this observation is a member of the class. So perhaps the decision

1. A feature representation of the input.

2. A classification function that computes !𝑦, estimated class via p(y|x).
Logistic regression will use sigmoid and softmax

3. An objective function used during learning to minimize error on the
training examples. We will discuss cross-entropy loss.

4. An algorithm for optimizing the objective function like stochastic
gradient descent.

Classifier components

Sentiment
classifier
Input: "Spiraling away from
narrative control as its first three
episodes unreel, this series, about a
post-apocalyptic future in which
nearly everyone is blind, wastes the
time of Jason Momoa and Alfre
Woodard, among others, on a story
that starts from a position of fun,
giddy strangeness and drags itself
forward at a lugubrious pace."

Output: positive (1) or negative (0)

Sentiment classifier
For sentiment classification, consider an input observation
x, represented by a vector of features [x1,x2,...,xn]. The
classifier output y can be 1 (positive sentiment) or 0
(negative sentiment). We want to estimate P(y = 1|x).

Logistic regression solves this task by learning, from a
training set, a vector of weights and a bias term.

𝑧 = ∑& 𝑤&𝑥& + 𝑏

We can also write this as a dot product:

𝑧 = 𝑤 ⋅ 𝑥 + 𝑏

Sigmoid function

5.1 • CLASSIFICATION: THE SIGMOID 3

is “positive sentiment” versus “negative sentiment”, the features represent counts
of words in a document, and P(y = 1|x) is the probability that the document has
positive sentiment, while and P(y = 0|x) is the probability that the document has
negative sentiment.

Logistic regression solves this task by learning, from a training set, a vector of
weights and a bias term. Each weight wi is a real number, and is associated with one
of the input features xi. The weight wi represents how important that input feature is
to the classification decision, and can be positive (meaning the feature is associated
with the class) or negative (meaning the feature is not associated with the class).
Thus we might expect in a sentiment task the word awesome to have a high positive
weight, and abysmal to have a very negative weight. The bias term, also called thebias term
intercept, is another real number that’s added to the weighted inputs.intercept

To make a decision on a test instance— after we’ve learned the weights in
training— the classifier first multiplies each xi by its weight wi, sums up the weighted
features, and adds the bias term b. The resulting single number z expresses the
weighted sum of the evidence for the class.

z =

 nX

i=1

wixi

!
+b (5.2)

In the rest of the book we’ll represent such sums using the dot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a ·b is the sum of
the products of the corresponding elements of each vector. Thus the following is an
equivalent formation to Eq. 5.2:

z = w · x+b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie
between 0 and 1. In fact, since weights are real-valued, the output might even be
negative; z ranges from �• to •.

Figure 5.1 The sigmoid function y= 1
1+e�z takes a real value and maps it to the range [0,1].

Because it is nearly linear around 0 but has a sharp slope toward the ends, it tends to squash
outlier values toward 0 or 1.

To create a probability, we’ll pass z through the sigmoid function, s(z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-
tion, and gives logistic regression its name. The sigmoid has the following equation,logistic

function
shown graphically in Fig. 5.1:

y = s(z) =
1

1+ e�z (5.4)

Probabilities

𝑃 𝑦 = 1 = 𝜎 𝑤 ⋅ 𝑥 + 𝑏 =
1

1 + 𝑒0(2⋅345)

Decision boundary
Now we have an algorithm that given an instance x
computes the probability P(y = 1|x). How do we make a
decision?

For a test instance x, we say yes if the probability P(y = 1|x)
is more than .5, and no otherwise. We call .5 the decision
boundary

!𝑦 = 71 𝑖𝑓 𝑃 𝑦 = 1 𝑥 > 0.5
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Extracting Features
It's hokey. There are virtually no surprises , and the writing is second-rate .
So why was it so enjoyable? For one thing , the cast is great . Another nice
touch is the music . I was overcome with the urge to get off the couch and
start dancing . It sucked me in , and it'll do the same to you .

Var Definition Value

x1 Count of positive lexicon words

x2 Count of negative lexicon words

x3 Does no appear? (binary feature)

x4 Number of 1st and 2nd person pronouns

x5 Does ! appear? (binary feature)

x6 Log of the word count for the document

Extracting Features
It's hokey. There are virtually no surprises , and the writing is second-rate .
So why was it so enjoyable? For one thing , the cast is great . Another nice
touch is the music . I was overcome with the urge to get off the couch and
start dancing . It sucked me in , and it'll do the same to you .

Var Definition Value

x1 Count of positive lexicon words 3

x2 Count of negative lexicon words

x3 Does no appear? (binary feature)

x4 Number of 1st and 2nd person pronouns

x5 Does ! appear? (binary feature)

x6 Log of the word count for the document

Extracting Features
It's hokey. There are virtually no surprises , and the writing is second-rate .
So why was it so enjoyable? For one thing , the cast is great . Another nice
touch is the music . I was overcome with the urge to get off the couch and
start dancing . It sucked me in , and it'll do the same to you .

Var Definition Value

x1 Count of positive lexicon words 3

x2 Count of negative lexicon words 2

x3 Does no appear? (binary feature)

x4 Number of 1st and 2nd person pronouns

x5 Does ! appear? (binary feature)

x6 Log of the word count for the document

Extracting Features
It's hokey. There are virtually no surprises , and the writing is second-rate .
So why was it so enjoyable? For one thing , the cast is great . Another nice
touch is the music . I was overcome with the urge to get off the couch and
start dancing . It sucked me in , and it'll do the same to you .

Var Definition Value

x1 Count of positive lexicon words 3

x2 Count of negative lexicon words 2

x3 Does no appear? (binary feature) 1

x4 Number of 1st and 2nd person pronouns

x5 Does ! appear? (binary feature)

x6 Log of the word count for the document

Extracting Features
It's hokey. There are virtually no surprises , and the writing is second-rate .
So why was it so enjoyable? For one thing , the cast is great . Another nice
touch is the music . I was overcome with the urge to get off the couch and
start dancing . It sucked me in , and it'll do the same to you .

Var Definition Value

x1 Count of positive lexicon words 3

x2 Count of negative lexicon words 2

x3 Does no appear? (binary feature) 1

x4 Number of 1st and 2nd person pronouns 3

x5 Does ! appear? (binary feature)

x6 Log of the word count for the document

Extracting Features
It's hokey. There are virtually no surprises , and the writing is second-rate .
So why was it so enjoyable? For one thing , the cast is great . Another nice
touch is the music . I was overcome with the urge to get off the couch and
start dancing . It sucked me in , and it'll do the same to you .

Var Definition Value

x1 Count of positive lexicon words 3

x2 Count of negative lexicon words 2

x3 Does no appear? (binary feature) 1

x4 Number of 1st and 2nd person pronouns 3

x5 Does ! appear? (binary feature) 0

x6 Log of the word count for the document 4.15

Word count = 64, ln(64) = 4.15

Var Definition Value Weight Product

x1 Count of positive lexicon words 3 2.5

x2 Count of negative lexicon words 2 -5.0

x3 Does no appear? (binary feature) 1 -1.2

x4 Num 1st and 2nd person pronouns 3 0.5

x5 Does ! appear? (binary feature) 0 2.0

x6 Log of the word count for the doc 4.15 0.7

b bias 1 0.1

𝑧 =C
&

𝑤&𝑥& + 𝑏

Var Definition Value Weight Product

x1 Count of positive lexicon words 3 2.5 7.5

x2 Count of negative lexicon words 2 -5.0 -10

x3 Does no appear? (binary feature) 1 -1.2 -1.2

x4 Num 1st and 2nd person pronouns 3 0.5 1.5

x5 Does ! appear? (binary feature) 0 2.0 0

x6 Log of the word count for the doc 4.15 0.7 2.905

b bias 1 0.1 .1

Computing Z

z=0.805𝑧 =C
&

𝑤&𝑥& + 𝑏

Var Definition Value Weight Product

x1 Count of positive lexicon words 3 2.5 7.5

x2 Count of negative lexicon words 2 -5.0 -10

x3 Does no appear? (binary feature) 1 -1.2 -1.2

x4 Num 1st and 2nd person pronouns 3 0.5 1.5

x5 Does ! appear? (binary feature) 0 2.0 0

x6 Log of the word count for the doc 4.15 0.7 2.905

b bias 1 0.1 .1

Sigmoid(Z)

σ(0.805)
= 0.69

Learning in logistic regression
How do we get the weights of the model? We learn the
parameters (weights + bias) via learning. This requires 2
components:

1. An objective function or loss function that tells us
distance between the system output and the gold
output. We will use cross-entropy loss.

2. An algorithm for optimizing the objective function. We
will use stochastic gradient descent to minimize the loss
function.

Loss functions
We need to determine for some observation x how close the
classifier output (!𝑦= σ (w · x + b)) is to the correct output (y,
which is 0 or 1).

𝐿 !𝑦, 𝑦 = how much !𝑦 differs from the true y

One example is mean squared error

𝐿FGH !𝑦, 𝑦 = I
J
(!𝑦 − 𝑦)J

Loss functions for probabilistic
classification
We use a loss function that prefers the correct class labels of
the training example to be more likely.

Conditional maximum likelihood estimation: Choose
parameters w, b that maximize the (log) probabilities of the
true labels in the training data.

The resulting loss function is the negative log likelihood loss,
more commonly called the cross entropy loss.

Loss functions for probabilistic
classification
For one observation x, let’s maximize the probability of the
correct label p(y|x).

𝑝 𝑦 𝑥 = !𝑦M(1 − !𝑦)I0M

If y = 1, then p y x = !𝑦.

If y = 0, then p y x = 1 − !𝑦.

Loss functions for probabilistic
classification
Change to logs (still maximizing)

log 𝑝(𝑦|𝑥) = log !𝑦M 1 − !𝑦 I0M

= 𝑦 log !𝑦 + 1 − 𝑦 log(1 − !𝑦)
This tells us what log likelihood should be maximized. But for
loss functions, we want to minimize things, so we’ll flip the
sign.

Cross-entropy loss
The result is cross-entropy loss:

𝐿UH !𝑦, 𝑦 = −log 𝑝(𝑦|𝑥) = −[𝑦 log !𝑦 + 1 − 𝑦 log(1 − !𝑦)]

Finally, plug in the definition for X𝒚= σ (w · x) + b

𝐿UH !𝑦, 𝑦 = −[𝑦 log σ(w·x+b) + 1 − 𝑦 log(1 − σ(w·x+b))]

Cross-entropy loss
Why does minimizing this negative log probability do what
we want? We want the loss to be smaller if the model’s
estimate is close to correct, and we want the loss to be
bigger if it is confused.

It's hokey. There are virtually no surprises , and the writing is second-rate .
So why was it so enjoyable? For one thing , the cast is great . Another nice
touch is the music . I was overcome with the urge to get off the couch and
start dancing . It sucked me in , and it'll do the same to you .

𝐿UH !𝑦, 𝑦 = −[𝑦 log σ(w·x+b) + 1 − 𝑦 log(1 − σ(w·x+b))]

P(sentiment=1|It’s hokey...) = 0.69. Let’s say y=1.

= −[log σ(w·x+b)]

= − log (0.69) = 𝟎. 𝟑𝟕

Cross-entropy loss
Why does minimizing this negative log probability do what
we want? We want the loss to be smaller if the model’s
estimate is close to correct, and we want the loss to be
bigger if it is confused.

It's hokey. There are virtually no surprises , and the writing is second-rate .
So why was it so enjoyable? For one thing , the cast is great . Another nice
touch is the music . I was overcome with the urge to get off the couch and
start dancing . It sucked me in , and it'll do the same to you .

𝐿UH !𝑦, 𝑦 = −[𝑦 log σ(w·x+b) + 1 − 𝑦 log(1 − σ(w·x+b))]

P(sentiment=1|It’s hokey...) = 0.69. Let’s pretend y=0.

= −[log(1 − σ(w·x+b))]
= − log (0.31) = 𝟏. 𝟏𝟕

Cross-entropy loss
Why does minimizing this negative log probability do what
we want? We want the loss to be smaller if the model’s
estimate is close to correct, and we want the loss to be
bigger if it is confused.

It's hokey. There are virtually no surprises , and the writing is second-rate .
So why was it so enjoyable? For one thing , the cast is great . Another nice
touch is the music . I was overcome with the urge to get off the couch and
start dancing . It sucked me in , and it'll do the same to you .

− log (0.31) = 𝟏. 𝟏𝟕= − log (0.69) = 𝟎. 𝟑𝟕

If our prediction is correct,
then our CE loss is lower

If our prediction is incorrect,
then our CE loss is higher

Loss on all training examples

log 𝑝 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑙𝑎𝑏𝑒𝑙𝑠 = logb
&cI

d

𝑝(𝑦 & |𝑥 &)

=C
&cI

d

log𝑝(𝑦 & |𝑥 &)

= −C
&cI

d

Lfg(!𝑦 & |𝑦 &)

Finding good parameters
We use gradient descent to find good settings for our weights and bias
by minimizing the loss function.

Gradient descent is a method that finds a minimum of a function by
figuring out in which direction (in the space of the parameters θ) the
function’s slope is rising the most steeply, and moving in the opposite
direction.

h𝜃 = argmin
o

1
𝑚
C
&cI

d

𝐿UH(𝑦 & , 𝑥 & ; 𝜃)

Gradient descent

Global v. Local Minimums
For logistic regression, this loss function is conveniently
convex.

A convex function has just one minimum, so there are no
local minima to get stuck in.

So gradient descent starting from any point is guaranteed to
find the minimum.

Iteratively find minimum

5.4 • GRADIENT DESCENT 9

How shall we find the minimum of this (or any) loss function? Gradient descent
is a method that finds a minimum of a function by figuring out in which direction
(in the space of the parameters q) the function’s slope is rising the most steeply,
and moving in the opposite direction. The intuition is that if you are hiking in a
canyon and trying to descend most quickly down to the river at the bottom, you might
look around yourself 360 degrees, find the direction where the ground is sloping the
steepest, and walk downhill in that direction.

For logistic regression, this loss function is conveniently convex. A convex func-convex

tion has just one minimum; there are no local minima to get stuck in, so gradient
descent starting from any point is guaranteed to find the minimum.

Although the algorithm (and the concept of gradient) are designed for direction
vectors, let’s first consider a visualization of the the case where the parameter of our
system, is just a single scalar w, shown in Fig. 5.3.

Given a random initialization of w at some value w1, and assuming the loss
function L happened to have the shape in Fig. 5.3, we need the algorithm to tell us
whether at the next iteration, we should move left (making w2 smaller than w1) or
right (making w2 bigger than w1) to reach the minimum.

w

Loss

0
w1 wmin

slope of loss at w1
is negative

(goal)

one step
of gradient

descent

Figure 5.3 The first step in iteratively finding the minimum of this loss function, by moving
w in the reverse direction from the slope of the function. Since the slope is negative, we need
to move w in a positive direction, to the right. Here superscripts are used for learning steps,
so w1 means the initial value of w (which is 0), w2 at the second step, and so on.

The gradient descent algorithm answers this question by finding the gradientgradient

of the loss function at the current point and moving in the opposite direction. The
gradient of a function of many variables is a vector pointing in the direction the
greatest increase in a function. The gradient is a multi-variable generalization of the
slope, so for a function of one variable like the one in Fig. 5.3, we can informally
think of the gradient as the slope. The dotted line in Fig. 5.3 shows the slope of this
hypothetical loss function at point w = w1. You can see that the slope of this dotted
line is negative. Thus to find the minimum, gradient descent tells us to go in the
opposite direction: moving w in a positive direction.

The magnitude of the amount to move in gradient descent is the value of the slope
d

dw f (x;w) weighted by a learning rate h . A higher (faster) learning rate means thatlearning rate

we should move w more on each step. The change we make in our parameter is the
learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt �h d
dw

f (x;w) (5.17)

Now let’s extend the intuition from a function of one scalar variable w to many

How much should we update
the parameter by?
The magnitude of the amount to move in gradient descent is the value
of the slope weighted by a learning rate η.

A higher/faster learning rate means that we should move w more on
each step.

5.4 • GRADIENT DESCENT 9

How shall we find the minimum of this (or any) loss function? Gradient descent
is a method that finds a minimum of a function by figuring out in which direction
(in the space of the parameters q) the function’s slope is rising the most steeply,
and moving in the opposite direction. The intuition is that if you are hiking in a
canyon and trying to descend most quickly down to the river at the bottom, you might
look around yourself 360 degrees, find the direction where the ground is sloping the
steepest, and walk downhill in that direction.

For logistic regression, this loss function is conveniently convex. A convex func-convex

tion has just one minimum; there are no local minima to get stuck in, so gradient
descent starting from any point is guaranteed to find the minimum.

Although the algorithm (and the concept of gradient) are designed for direction
vectors, let’s first consider a visualization of the the case where the parameter of our
system, is just a single scalar w, shown in Fig. 5.3.

Given a random initialization of w at some value w1, and assuming the loss
function L happened to have the shape in Fig. 5.3, we need the algorithm to tell us
whether at the next iteration, we should move left (making w2 smaller than w1) or
right (making w2 bigger than w1) to reach the minimum.

w

Loss

0
w1 wmin

slope of loss at w1
is negative

(goal)

one step
of gradient

descent

Figure 5.3 The first step in iteratively finding the minimum of this loss function, by moving
w in the reverse direction from the slope of the function. Since the slope is negative, we need
to move w in a positive direction, to the right. Here superscripts are used for learning steps,
so w1 means the initial value of w (which is 0), w2 at the second step, and so on.

The gradient descent algorithm answers this question by finding the gradientgradient

of the loss function at the current point and moving in the opposite direction. The
gradient of a function of many variables is a vector pointing in the direction the
greatest increase in a function. The gradient is a multi-variable generalization of the
slope, so for a function of one variable like the one in Fig. 5.3, we can informally
think of the gradient as the slope. The dotted line in Fig. 5.3 shows the slope of this
hypothetical loss function at point w = w1. You can see that the slope of this dotted
line is negative. Thus to find the minimum, gradient descent tells us to go in the
opposite direction: moving w in a positive direction.

The magnitude of the amount to move in gradient descent is the value of the slope
d

dw f (x;w) weighted by a learning rate h . A higher (faster) learning rate means thatlearning rate

we should move w more on each step. The change we make in our parameter is the
learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt �h d
dw

f (x;w) (5.17)

Now let’s extend the intuition from a function of one scalar variable w to many

Many dimensions

10 CHAPTER 5 • LOGISTIC REGRESSION

variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimension (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization:

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector in two dimensions w and b.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L(f (x;q),y)) =

2

66664

∂
∂w1

L(f (x;q),y)
∂

∂w2
L(f (x;q),y)

...
∂

∂wn
L(f (x;q),y)

3

77775
(5.18)

The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L(f (x;q),y) (5.19)

5.4.1 The Gradient for Logistic Regression
In order to update q , we need a definition for the gradient —L(f (x;q),y). Recall that
for logistic regression, the cross-entropy loss function is:

LCE(w,b) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.20)

It turns out that the derivative of this function for one observation vector x is
Eq. 5.21 (the interested reader can see Section 5.8 for the derivation of this equation):

∂LCE(w,b)
∂w j

= [s(w · x+b)� y]x j (5.21)

Updating each dimension wi

10 CHAPTER 5 • LOGISTIC REGRESSION

variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimension (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization:

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector in two dimensions w and b.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L(f (x;q),y)) =

2

66664

∂
∂w1

L(f (x;q),y)
∂

∂w2
L(f (x;q),y)

...
∂

∂wn
L(f (x;q),y)

3

77775
(5.18)

The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L(f (x;q),y) (5.19)

5.4.1 The Gradient for Logistic Regression
In order to update q , we need a definition for the gradient —L(f (x;q),y). Recall that
for logistic regression, the cross-entropy loss function is:

LCE(w,b) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.20)

It turns out that the derivative of this function for one observation vector x is
Eq. 5.21 (the interested reader can see Section 5.8 for the derivation of this equation):

∂LCE(w,b)
∂w j

= [s(w · x+b)� y]x j (5.21)

10 CHAPTER 5 • LOGISTIC REGRESSION

variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimension (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization:

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector in two dimensions w and b.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L(f (x;q),y)) =

2

66664

∂
∂w1

L(f (x;q),y)
∂

∂w2
L(f (x;q),y)

...
∂

∂wn
L(f (x;q),y)

3

77775
(5.18)

The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L(f (x;q),y) (5.19)

5.4.1 The Gradient for Logistic Regression
In order to update q , we need a definition for the gradient —L(f (x;q),y). Recall that
for logistic regression, the cross-entropy loss function is:

LCE(w,b) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.20)

It turns out that the derivative of this function for one observation vector x is
Eq. 5.21 (the interested reader can see Section 5.8 for the derivation of this equation):

∂LCE(w,b)
∂w j

= [s(w · x+b)� y]x j (5.21)

The final equation for updating θ based on the
gradient is

The Gradient
To update θ, we need a definition for the gradient ∇L(f (x; θ), y).

For logistic regression the cross-entropy loss function is:

The derivative of this function for one observation vector x for a single
weight wj is

The gradient is a very intuitive value: the difference between the true y
and our estimate for x, multiplied by the corresponding input value xj .

10 CHAPTER 5 • LOGISTIC REGRESSION

variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimension (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization:

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector in two dimensions w and b.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L(f (x;q),y)) =

2

66664

∂
∂w1

L(f (x;q),y)
∂

∂w2
L(f (x;q),y)

...
∂

∂wn
L(f (x;q),y)

3

77775
(5.18)

The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L(f (x;q),y) (5.19)

5.4.1 The Gradient for Logistic Regression
In order to update q , we need a definition for the gradient —L(f (x;q),y). Recall that
for logistic regression, the cross-entropy loss function is:

LCE(w,b) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.20)

It turns out that the derivative of this function for one observation vector x is
Eq. 5.21 (the interested reader can see Section 5.8 for the derivation of this equation):

∂LCE(w,b)
∂w j

= [s(w · x+b)� y]x j (5.21)

10 CHAPTER 5 • LOGISTIC REGRESSION

variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimension (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization:

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector in two dimensions w and b.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L(f (x;q),y)) =

2

66664

∂
∂w1

L(f (x;q),y)
∂

∂w2
L(f (x;q),y)

...
∂

∂wn
L(f (x;q),y)

3

77775
(5.18)

The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L(f (x;q),y) (5.19)

5.4.1 The Gradient for Logistic Regression
In order to update q , we need a definition for the gradient —L(f (x;q),y). Recall that
for logistic regression, the cross-entropy loss function is:

LCE(w,b) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.20)

It turns out that the derivative of this function for one observation vector x is
Eq. 5.21 (the interested reader can see Section 5.8 for the derivation of this equation):

∂LCE(w,b)
∂w j

= [s(w · x+b)� y]x j (5.21)

Average Loss

This is what we want to minimize!!

𝐶𝑜𝑠𝑡 𝑤, 𝑏 =
1
𝑚
C
&cI

d

𝐿UH(!𝑦 & , 𝑦(&))

= −
1
𝑚
C
&cI

d

𝑦 & log 𝜎 𝑤 ⋅ 𝑥 & + 𝑏 + 1 − 𝑦 & log(1 − 𝜎 𝑤 ⋅ 𝑥 & + 𝑏)

The Gradient
The loss for a batch of data or an entire dataset is just the average loss
over the m examples

The gradient for multiple data points is the sum of the individual
gradients:

𝐶𝑜𝑠𝑡 𝑤, 𝑏 = −
1
𝑚C

&cI

d

𝑦(&) log 𝜎 𝑤 ⋅ 𝑥 & + 𝑏 + 1 − 𝑦 & log(1 − 𝜎 𝑤 ⋅ 𝑥 & + 𝑏)

𝜕𝐶𝑜𝑠𝑡 𝑤, 𝑏
𝜕𝑤u

=C
&cI

d

[𝜎 𝑤 ⋅ 𝑥 & + 𝑏 − 𝑦(&)]𝑥u
(&)

Stochastic gradient descent
algorithm

5.4 • GRADIENT DESCENT 11

Note in Eq. 5.21 that the gradient with respect to a single weight w j represents a
very intuitive value: the difference between the true y and our estimated ŷ = s(w ·
x+b) for that observation, multiplied by the corresponding input value x j.

The loss for a batch of data or an entire dataset is just the average loss over the
m examples:

Cost(w,b) = � 1
m

mX

i=1

y(i) logs(w · x(i) +b)+(1� y(i)) log
⇣

1�s(w · x(i) +b)
⌘

(5.22)

And the gradient for multiple data points is the sum of the individual gradients::

∂Cost(w,b)
∂w j

=
mX

i=1

h
s(w · x(i) +b)� y(i)

i
x(i)j (5.23)

5.4.2 The Stochastic Gradient Descent Algorithm
Stochastic gradient descent is an online algorithm that minimizes the loss function
by computing its gradient after each training example, and nudging q in the right
direction (the opposite direction of the gradient). Fig. 5.5 shows the algorithm.

function STOCHASTIC GRADIENT DESCENT(L(), f (), x, y) returns q
where: L is the loss function
f is a function parameterized by q
x is the set of training inputs x(1), x(2), ..., x(n)

y is the set of training outputs (labels) y(1), y(2), ..., y(n)

q 0
repeat T times

For each training tuple (x(i), y(i)) (in random order)
Compute ŷ (i) = f (x(i);q) # What is our estimated output ŷ?
Compute the loss L(ŷ (i),y(i)) # How far off is ŷ(i)) from the true output y(i)?
g —q L(f (x(i);q),y(i)) # How should we move q to maximize loss ?
q q � h g # go the other way instead

return q

Figure 5.5 The stochastic gradient descent algorithm

Stochastic gradient descent is called stochastic because it chooses a single ran-
dom example at a time, moving the weights so as to improve performance on that
single example. That can result in very choppy movements, so it’s also common to
do minibatch gradient descent, which computes the gradient over batches of train-minibatch
ing instances rather than a single instance.

The learning rate h is a parameter that must be adjusted. If it’s too high, the
learner will take steps that are too large, overshooting the minimum of the loss func-
tion. If it’s too low, the learner will take steps that are too small, and take too long to
get to the minimum. It is most common to begin the learning rate at a higher value,
and then slowly decrease it, so that it is a function of the iteration k of training; you
will sometimes see the notation hk to mean the value of the learning rate at iteration
k.

Worked example
Let’s walk though a single step of the gradient descent algorithm. We’ll
use a simple sentiment classifier with just 2 features, and 1 training
instance where the correct value is y = 1 (this is a positive review).

x1 = 3 (count of positive lexicon words)

x2 = 2 (count of positive negative words)

The initial weights and bias in θ0 are all set to 0, and the initial learning
rate η is 0.1:

w1 = w2 = b = 0

η = 0.1

The single update step requires that we compute the gradient,
multiplied by the learning rate:

𝜃v4I = 𝜃v − 𝜂∇o𝐿(𝑓 𝑥 & ; 𝜃 , 𝑦 &)

Worked example
The derivative of this function for a single training example x for a
single weight wj is

The gradient vector has 3 dimensions, for w1, w2, and b.
For our input, x1 = 3 and x2 = 2

x2 = 2

𝜕𝐿UH 𝑤, 𝑏
𝜕𝑤u

= 𝑠 𝑤 ⋅ 𝑥 + 𝑏 − 𝑦 𝑥u

∇2,5=

xyz{ 2,5
x2|

xyz{ 2,5
x2}

xyz{ 2,5
x5

=
𝜎 𝑤 ⋅ 𝑥 + 𝑏 − 𝑦 𝑥I
𝜎 𝑤 ⋅ 𝑥 + 𝑏 − 𝑦 𝑥J
𝜎 𝑤 ⋅ 𝑥 + 𝑏 − 𝑦

=
𝜎 0 − 1 𝑥I
𝜎 0 − 1 𝑥J
𝜎 0 − 1

=
−0.5𝑥I
−0.5𝑥J
−0.5

=
−1.5
−1.0
−0.5

Worked example
Now that we have a gradient ∇w,b , we compute the new parameter
vector θ1 by moving θ0 in the opposite direction from the gradient:

So after one step of gradient descent, the weights have shifted to be:

w1 = 0.15, w2 = 0.1, and b= .05

𝜃I =
𝑤I
𝑤J
𝑏

− 𝜂
−1.5
−1.0
−0.5

=
.15
.1
.05

Mini-batch training
Stochastic gradient descent chooses a single random example at a
time, and updates its weights on that example. As a result the updates
can fluctuate.

An alternate is batch training, which computes the gradient over the
entire dataset. This gives a much better estimate of which direction to
move the weights, but takes a long time to compute.

A commonly used compromise is mini-batch training, where we train
on a small batch. The batch size can be 512 or 1024, often selected
based on computational resources, so that all examples in the mini-
batch can be processed in parallel. The loss is then accumulated.

Regularization
Overfitting is a problem with many machine learning models.
Overfitting results in poor generalization and poor performance on
unseen test set.

In logistic regression, if a feature only occurs in one class then it will get
a high weight. Sometimes we are just modelling noisy factors that just
accidentally correlate with the class.

Regularization is a way to penalize large weights. A regularization term
is added to the loss function.

Lasso regression uses L1 regularization
Ridge regression uses L2 regularization

Multinomial logistic regression
Instead of binary classification, we often want more than two classes.
For sentiment classification we might extend the class labels to be
positive, negative, and neutral.

We want to know the probability of y for each class c ∈ C, p(y = c|x).

To get a proper probability, we will use a generalization of the sigmoid
function called the softmax function.

softmax 𝑧& =
𝑒��

∑ucI� 𝑒��
1 ≤ 𝑖 ≤ 𝑘

Softmax
The softmax function takes in an input vector z = [z1,z2,...,zk] and outputs
a vector of values normalized into probabilities.

For example, for this input:

z = [0.6, 1.1, −1.5, 1.2, 3.2, −1.1]

Softmax will output:

[0.056, 0.090, 0.007, 0.099, 0.74, 0.010]

softmax 𝑧 = [
𝑒�|

∑&cI� 𝑒��
,

𝑒�}

∑&cI� 𝑒��
,⋯ ,

𝑒��

∑&cI� 𝑒��
]

Next time: Neural Nets
�� �� '&&%�'038"3% /&63"- /&5803,4

UIF JOQVU UP UIF OFUXPSL� ɩF UPQ�NPTU MBZFS IBT OP PVUHPJOH BSSPXT
 BOE JT UIF PVUQVU PG UIF
OFUXPSL� ɩF PUIFS MBZFST BSF DPOTJEFSFE iIJEEFO�w ɩF TJHNPJE TIBQF JOTJEF UIF OFVSPOT JO UIF
NJEEMF MBZFST SFQSFTFOU B OPOMJOFBS GVODUJPO 	J�F�
 UIF MPHJTUJD GVODUJPO 1=.1C e!x/
 UIBU JT BQQMJFE
UP UIF OFVSPO�T WBMVF CFGPSF QBTTJOH JU UP UIF PVUQVU� *O UIF mHVSF
 FBDI OFVSPO JT DPOOFDUFE UP BMM
PG UIF OFVSPOT JO UIF OFYU MBZFS�UIJT JT DBMMFE B GVMMZ DPOOFDUFE MBZFS PS BO BĆOF MBZFS�

Output layer

Hidden layer

Hidden layer

Input layer

y2 y3y1

x1 x2 x3 x4

∫ ∫ ∫∫∫

∫ ∫ ∫ ∫∫∫

'JHVSF ���� 'FFE�GPSXBSE OFVSBM OFUXPSL XJUI UXP IJEEFO MBZFST�

8IJMF UIF CSBJO NFUBQIPS JT TFYZ BOE JOUSJHVJOH
 JU JT BMTP EJTUSBDUJOH BOE DVNCFSTPNF
UP NBOJQVMBUF NBUIFNBUJDBMMZ� 8F UIFSFGPSF TXJUDI CBDL UP VTJOH NPSF DPODJTF NBUIFNBUJDBM
OPUBUJPO� "T XJMM TPPO CFDPNF BQQBSFOU
 B GFFE�GPSXBSE OFUXPSL BT UIF POF JO 'JHVSF ��� JT TJNQMZ
B TUBDL PG MJOFBS NPEFMT TFQBSBUFE CZ OPOMJOFBS GVODUJPOT�

ɩF WBMVFT PG FBDI SPX PG OFVSPOT JO UIF OFUXPSL DBO CF UIPVHIU PG BT B WFDUPS� *O 'JHVSF ���
UIF JOQVU MBZFS JT B 4�EJNFOTJPOBM WFDUPS 	x

 BOE UIF MBZFS BCPWF JU JT B 6�EJNFOTJPOBM WFDUPS 	h1
�
ɩF GVMMZ DPOOFDUFE MBZFS DBO CF UIPVHIU PG BT B MJOFBS USBOTGPSNBUJPO GSPN 4 EJNFOTJPOT UP 6

EJNFOTJPOT� " GVMMZ DPOOFDUFE MBZFS JNQMFNFOUT B WFDUPS�NBUSJY NVMUJQMJDBUJPO
 h D xW XIFSF
UIF XFJHIU PG UIF DPOOFDUJPO GSPN UIF i UI OFVSPO JO UIF JOQVU SPX UP UIF j UI OFVSPO JO UIF PVUQVU
SPX JT W Œi;j !�¤ ɩF WBMVFT PG h BSF UIFO USBOTGPSNFE CZ B OPOMJOFBS GVODUJPO g UIBU JT BQQMJFE UP
FBDI WBMVF CFGPSF CFJOH QBTTFE PO BT JOQVU UP UIF OFYU MBZFS� ɩF XIPMF DPNQVUBUJPO GSPN JOQVU
UP PVUQVU DBO CF XSJUUFO BT� .g.xW 1//W 2 XIFSF W 1 BSF UIF XFJHIUT PG UIF mSTU MBZFS BOE W 2

BSF UIF XFJHIUT PG UIF TFDPOE POF� 5BLJOH UIJT WJFX
 UIF TJOHMF OFVSPO JO 'JHVSF ��� JT FRVJWBMFOU
UP B MPHJTUJD 	MPH�MJOFBS
 CJOBSZ DMBTTJmFS !.xw/ XJUIPVU B CJBT UFSN �
¤5P TFF XIZ UIJT JT UIF DBTF
 EFOPUF UIF XFJHIU PG UIF i UI JOQVU PG UIF j UI OFVSPO JO h BT W Œi;j !� ɩF WBMVF PG hŒj ! JT UIFO
hŒj ! D P4

iD1 xŒi! " W Œi;j !�

