CIS 530: Text
Processing Wrap up
& Logistic Regression

I\/IONDAYS AND WEDNESDAYS 1:30-3PM
: . ea-B= ANNENBERG 110
COI\/IPUTATIONAL LINGUISTICS CLASS.ORG

PROFESSOR CALLISON-BURCH

http://computational-linguistics-class.org/

Reminders

©@ O

QUIZ 1 IS DUE TONIGHT HELP US HELP YOU ON READ TEXTBOOK
BEFORE 11:59PM. PIAZZA CHAPTER 5

Wrap-up:
Text Processing

READ: JURAFSKY AND MARTIN CHAPTER 2

WORD NORMALIZATION AND STEMMING

Recap: Normalization

Need to “normalize” terms
o Information Retrieval: indexed text & query terms must have same form.

o We want to match U.S.A. and USA

We implicitly define equivalence classes of terms
° e.g., deleting periods in a term

Alternative: asymmetric expansion:
o Enter: window Search: window, windows
o Enter: windows Search: Windows, windows, window

o Enter: Windows Search: Windows

Potentially more powerful, but less efficient

Issues In

Tokenization

Finland’s capital —>
Finland Finlands Finland’s ?

what’re, I'm, isn’‘’t — What
are, I am, 1is not

Hewlett-Packard —
Hewlett Packard ?

state-of-the-art —> state
of the art ?

Lowercase — lower-
case lowercase lower case ?

San Francisco — one token or
two?

m.p.h., PhD. — ??

French
o L'ensemble — one token or two?

o L?L'?Lle?

o Want Fensemble to match with un ensemble

German noun compounds are not segmented
> Lebensversicherungsgesellschaftsangestellter
o ‘life insurance company employee’
o German information retrieval needs compound splitter

Tokenization: language issues

Chinese and Japanese no spaces between words:
o SHRLRENE FEREEE AR RS 8K,
o SHRLKEE E BE E XE FEE M HEZEKX

o Sharapova now lives in US southeastern Florida

Further complicated in Japanese, with multiple alphabets intermingled
o Dates/amounts in multiple formats

TI—Fa1 5007t 1L IEERT/E d)}‘:dé#/%%tsom/(@s, 00075 %5)
T~ __— {1

Katakana Hiragana Kanji Romaji

End-user can express query entirely in hiragana!

Tokenization: language issues

Word

Tokenization
in Chinese

Also called Word Segmentation

Chinese words are composed of characters

o Characters are generally 1 syllable and 1
morpheme.

o Average word is 2.4 characters long.

Standard baseline segmentation algorithm:
o Maximum Matching (also called Greedy)

Maximum
Matching
Word

Segmentation
Algorithm

Given a wordlist of Chinese, and a string:

1)

2)

3)
4)

Start a pointer at the beginning of the
string

Find the longest word in dictionary that
matches the string starting at pointer

Move the pointer over the word in string

Goto 2

Max-match segmentation
illustratior

Thecatinthehat the cat in the hat

Thetabledownthere the table down there

theta bled own there

Doesn’t generally work in English!

But works surprisingly well in Chinese
o SHRLREINE B EEXEREISMGHS B,
o HRLRYE WE BE ' XE FEmE /M HBZEX

Modern probabilistic segmentation algorithms even better

Byte-Pair Encoding for
Tokenization

Modern tokenizers use data to automatically determine what size
tokens we should use, rather than relying on whitespace, or max-matc

Sometimes we want a space delimited words like spinach to be a token
Other times we might want multi-word units like New York Times

Sometimes we want subword units like morphemes —est or —er

Subword units are helpful for dealing with unknown words.

Byte-Pair Encoding for
Tokenization

The BPE algorithm tokenizes text, such that most tokens are words, but
some tokens are frequent morphemes or other subwords like —er.

Unseen word can be represented by combining the parts.

BPE was originally used for text compression, but was repurposed for
tokenization in 2016 by Rico Sennrich, Barry Haddow, and Alexanra
Birch to translate rare and unseen words.

Start with a set of symbols that is the set of characters, plus an end of
word symbol.

Byte-Pair Encoding for
Tokenization

Start with a set of symbols that is the set of characters, plus an end of
word symbol.

At each step, count the number of symbol pairs, find the most frequent
pair (A, ‘B’), and replace it with the new merged symbol (‘AB’).

Repeat this merge step k times.

The resulting symbol set will consist of the original characters plus k
new symbols.

import re, collections

def get_stats (vocab):
pairs = collections.defaultdict(int)
for word, freq in vocab.items ():
symbols = word. split ()
for 1 in range(len(symbols)—1):
pairs [symbols[i],symbols[i+1]] += freq
return pairs

def merge_vocab(pair, v_in):

v_out = {}

bigram = re.escape(. .join(pair))

p = re.compile(r’(?<!\S)’ 4 bigram + r’(?!\S)’)

for word in v_in:
w_out = p.sub(’’.join(pair), word)
v_out|[w_out] = v_in[word]

return v_out

vocab = {’looowo</w>" : 5, ’loooweeosoto</w>" @ 2,
‘Nneeowoeenro</w>’:6, ‘woicdoeoro</w>":3, ‘noeowo</w>':2}
num_merges = §

for 1 in range (num-_merges):

pairs = get_stats (vocab)
best = max(pairs, key=pairs.get)
vocab = merge_vocab(best, vocab)

print (best)

dictionary vocabulary

ow _ _,d, e, 1, 1, n, o, r, s, t, w
owest_

ewer _

ider _

e w _

D W AN W
S =858 -

dictionary vocabulary

l ow _ ., d, e, 1, 1, n, o, r, s, t, w, r_
lowest_

newer_

wider_

new_

DO W O N

O W AN DN

dictionary

1

S, = B8
m - ™ O

0)

W

W
W
d
W

e st _
er__
er__

vocabulary
,d,e,i,1,n,0,r,s,t,w,r, er_

dictionary vocabulary

low _ _,d,e,i,1,n,0,r,s,t,w,r_, er_, ew
owest_

ew er_

ider_

ew _

DD W AN N W
S = B8

dictionary vocabulary

low _ _,d,e,i,1,n,0,r,s,t,w,r_, er_, ew
owest_

ew er_

ider_

ew _

DD W AN N W
S = B8

Merge Current Vocabulary

(n, ew) _,d,e,i,1,n,0,r,s, t,w,r_, er_, ew, hew

(1, o’ _,d,e,i,1,n,0,r,s,t,w,r_, er__, ew, new, lo

(lo, w) _,d,e,i,1,n,0,r,s,t,w,r_, er_, ew, new, lo, low

(new, er_) _,d,e,i,1,n,0,1,s,t,w,r_, er_, ew, new, 1o, low, newer__

(low,) _,d,e,i,1,n,0,r,s,t,w,r_, er_, ew, new, lo, low, newer__, low__

Basic Text
Processing

WORD NORMALIZATION AND STEMMING

Normalization

Need to “normalize” terms
o Information Retrieval: indexed text & query terms must have same form.

o We want to match U.S.A. and USA

We implicitly define equivalence classes of terms
° e.g., deleting periods in a term

Alternative: asymmetric expansion:
o Enter: window Search: window, windows
o Enter: windows Search: Windows, windows, window

o Enter: Windows Search: Windows

Potentially more powerful, but less efficient

Case folding

Applications like IR: reduce all letters to lower case
o Since users tend to use lower case

> Possible exception: upper case in mid-sentence?

° e.g., General Motors
o Fed vs. fed
o SAIL vs. sail

For sentiment analysis, MT, Information extraction
o Case is helpful (US versus us is important)

Lemmatization

Reduce inflections or variant forms to base form
°cam, are, is —> be
o car, cars, car's, cars' — car

the boy's cars are different colors — the boy car be different color

Lemmatization: have to find correct dictionary headword form

Machine translation
o Spanish quiero (‘l want’), quieres (‘you want’) same lemma as querer ‘want’

Morphology

Morphemes:
> The small meaningful units that make up words
> Stems: The core meaning-bearing units
o Affixes: Bits and pieces that adhere to stems

> Often with grammatical functions

Stemming

Reduce terms to their stems in information retrieval

Stemming is crude chopping of affixes
° language dependent
° e.g., automate(s), automatic, automation all reduced to automat.

for example compressed
and compression are both q
accepted as equivalent to

compress.

for exampl compress and
compress ar both accept
as equival to compress

Porter’s algorithm
The most common English
stemmer

Step 1a

sses — SS caresses — caress

Step 2 (for long stems)

ational— ate relational—> relate

ies — 1 ponies — poni _ : L. S
lizer—> 1ze digitizer — diglitize
SS — ss caress — caress
ator— ate operator — operate
S —> 9 cats — cat
Step 1b Step 3 (for longer stems)
(*v*)ing — ¢ walking — walk al — ¢ revival — reviv
sing — sing able — ¢ adjustable —» adjust

(*v*)ed — ¢ plastered —» plaster ate —> @ activate — activ

(*v*)ing —»> ¢ walking — walk
sing — sing

(*v*)ing — ¢ walking — walk

S1ng —> S1ng
tr -sc 'A-Za-z' '\n' < shakes.txt | grep ’'ing$' | sort | uniq -c | sort —nr

1312 King 548 being
548 being 541 nothing
541 nothing 152 something
388 king 145 coming
375 bring 130 morning
358 thing 122 having
307 ring 120 living
152 something 117 loving
145 coming 116 Being
130 morning 102 going

tr -sc 'A-Za-z' '\n' < shakes.txt | grep '[aeiou].*ing$' | sort | unig -c | sort —nr

Some languages requires complex morpheme segmentation
o Turkish
o Uygarlastiramadiklarimizdanmissinizcasina
> “(behaving) as if you are among those whom we could not civilize’
o Uygar “civilized’ + las "become’
+ tir ‘cause’ + ama "not able’
+ dik "past’ + lar ‘plural’
+imiz ‘p1pl’ + dan ‘abl’
+ mis ‘past’ + siniz ‘2pl’ + casina ‘as if’

Dealing with complex morphology is

sometimes necessa ry

Basic Text
Processing

SENTENCE SEGMENTATION AND DECISION TREES

Sentence

Segmentation

|, ? are relatively unambiguous

Period “” is quite ambiguous
> Sentence boundary
o Abbreviations like Inc. or Dr.
° Numbers like .02% or 4.3

Build a binary classifier

o Looks ata “”
o Decides EndOfSentence/NotEndOfSentence

o Classifiers: hand-written rules, regular
expressions, or machine-learning

E-O-S

Not E-O-S

YE
Not E-O-S E-O-S

Determining if a word is end-of-sentence: a Decision Tree

Case of word with “”: Upper, Lower, Cap, Number

“wn,

Case of word after “”: Upper, Lower, Cap, Number

Numeric features
° Length of word with “”

> Probability(word with “” occurs at end-of-s)

an

> Probability(word after “” occurs at beginning-of-s)

More sophisticated decision tree features

A decision tree is just an if-then-else statement
The interesting research is choosing the features

Setting up the structure is often too hard to do by hand
° Hand-building only possible for very simple features, domains
o For numeric features, it’s too hard to pick each threshold

° Instead, structure usually learned by machine learning from a training
corpus

Implementing Decision Trees

We can think of the questions in a decision tree

As features that could be exploited by any kind of classifier
o Logistic regression
° SVM
° Neural Nets
° etc.

Decision Trees and other classifiers

Logistic
Regression

JURAFSKY AND MARTIN CHAPTER 5

Generative v. Discriminative
Classifiers and cats v. dogs

Naive Bayes is a generative classifier

Logistic regression is a is a discriminiative classifier

Tanks v. no tanks

A (possibly apocryphal) tale in artificial intelligence tells about
researchers training a neural network to detect tanks in photographs for
a DARPA project.

They apparently succeed. Great let’s deploy it!
Oops! It didn’t work as well as we thought it would.

Later they realized the photographs had been collected under specific

conditions for tanks/non-tanks and the classifier had simply learned to
distinguish between the time of day.

Generative v. Discriminative
Classifiers

Naive Bayes doesn’t directly likelihood prior
compute P(c|d). Instead it ¢ =argmax P(dlc) P(c)
computes it using two terms: ceC

A generative model uses the likelihood term, which expresses how to
generate the features of a document if we knew it was of class c.

A discriminative model attempts to directly compute P(c|d).
It may learn to assign a high weight to document features that directly
improve its ability to discriminate between classes

Unlike the generative model, good paramters estimates for a
discriminative model don’t help it generate an example of one of the
classes.

Classifier components

1. A feature representation of the input.

2. A classification function that computes y, estimated class via p(y | x).
Logistic regression will use sigmoid and softmax

3. An objective function used during learning to minimize error on the
training examples. We will discuss cross-entropy loss.

4. An algorithm for optimizing the objective function like stochastic
gradient descent.

stv+

Sentiment
classifier

Input: "Spiraling away from
narrative control as its first three
episodes unreel, this series, about a
post-apocalyptic future in which
nearly everyone is blind, wastes the
time of Jason Momoa and Alfre
Woodard, among others, on a story
that starts from a position of fun,
giddy strangeness and drags itself
forward at a lugubrious pace."

Output: positive (1) or negative (0)

Sentiment classifier

For sentiment classification, consider an input observation

x, represented by a vector of features [x,x,,...,x,]. The
classifier output y can be 1 (positive sentiment) or 0
(negative sentiment). We want to estimate P(y = 1| x).

Logistic regression solves this task by learning, from a
training set, a vector of weights and a bias term.

Z=;wix;+Db
We can also write this as a dot product:

Z=W-X+Db

Sigmoid function

1.0

0.8

0.6

0.4

0.2

Probabilities

Py=1)=ow:-x+b) =

1 + e—(W-x+b)

Decision boundary

Now we have an algorithm that given an instance x
computes the probability P(y = 1|x). How do we make a

decision?

y =

_A

1if P(y = 1]x) > 0.5
0 otherwise

\

For a test instance x, we say yes if the probability P(y = 1]|x)
is more than .5, and no otherwise. We call .5 the decision

boundary

Extracting Features

It's hokey. There are virtually no surprises, and the writing is second-rate .
So why was it so enjoyable? For one thing, the cast is great . Another nice
touch is the music . | was overcome with the urge to get off the couch and
start dancing . It sucked me in, and it'll do the same to you .

X1 Count of positive lexicon words

X5 Count of negative lexicon words

X3 Does no appear? (binary feature)

X4 Number of 15t and 2nd person pronouns
Xs Does ! appear? (binary feature)

Xg Log of the word count for the document

Extracting Features

It's hokey. There are virtually no surprises, and the writing is second-rate .
So why was it so[enjoyable]? For one thing, the cast is . Another
touch is the music . | was overcome with the urge to get off the couch and
start dancing . It sucked me in, and it'll do the same to you .

X1 Count of positive lexicon words 3
X5 Count of negative lexicon words

X3 Does no appear? (binary feature)

X4 Number of 15t and 2nd person pronouns

Xs Does ! appear? (binary feature)

Xg Log of the word count for the document

Extracting Features

It'sJAOKEY There are virtually no surprises , and the writing is .
So why was it so/enjoyable? For one thing, the cast is . Another

touch is the music . | was overcome with the urge to get off the couch and
start dancing . It sucked me in, and it'll do the same to you .

X1 Count of positive lexicon words 3
X5 Count of negative lexicon words 2
X3 Does no appear? (binary feature)

X4 Number of 15t and 2nd person pronouns

Xs Does ! appear? (binary feature)

Xg Log of the word count for the document

Extracting Features

It's(ABKEY There are virtually@® surprises , and the writing is .
So why was it so/enjoyable? For one thing, the cast is . Another

touch is the music . | was overcome with the urge to get off the couch and
start dancing . It sucked me in, and it'll do the same to you .

X1 Count of positive lexicon words 3
X5 Count of negative lexicon words 2
X3 Does no appear? (binary feature) 1
X4 Number of 15t and 2nd person pronouns

Xs Does ! appear? (binary feature)

Xg Log of the word count for the document

Extracting Features

It's(ABKEY There are virtually@® surprises , and the writing is .
So why was it so/enjoyable? For one thing, the cast is . Another

touch is the music .‘Nas overcome with the urge to get off the couch and
start dancing . It sucked@® in , and it'll do the same to (@D .

X1 Count of positive lexicon words 3
X5 Count of negative lexicon words 2
X3 Does no appear? (binary feature) 1
X4 Number of 15t and 2nd person pronouns 3
Xs Does ! appear? (binary feature)

Xg Log of the word count for the document

Extracting Features

It's(ABKEY There are virtually@® surprises , and the writing is .
So why was it so/enjoyable? For one thing, the cast is . Another

touch is the music .‘Nas overcome with the urge to get off the couch and
start dancing . It sucked@® in , and it'll do the same to (@D .

Word count = 64, In(64) = 4.15

X1 Count of positive lexicon words 3
X5 Count of negative lexicon words 2
X3 Does no appear? (binary feature) 1
X4 Number of 15t and 2nd person pronouns 3
Xs Does ! appear? (binary feature) 0
Xg Log of the word count for the document 4.15

-mm

Count of positive lexicon words

X Count of negative lexicon words 2 -5.0
X3 Does no appear? (binary feature) 1 -1.2
X4 Num 15t and 2nd person pronouns 3 0.5
X5 Does ! appear? (binary feature) 0 2.0

Xg Log of the word count for the doc 4.15 0.7

b bias 1 0.1

Z=2Wixi+b
[

Computing Z
-mm

Count of positive lexicon words

Count of negative lexicon words
Does no appear? (binary feature)
Num 15t and 2nd person pronouns

Does ! appear? (binary feature)

Log of the word count for the doc

bias

Z=ZWiXi+b
[

2

1

3

4.15

-5.0

-1.2

0.5

2.0
0.7

0.1

-10
-1.2
1.5

0
2.905

z=0.805

Sigmoid(Z)
-mm

Count of positive lexicon words

Count of negative lexicon words 2
Does no appear? (binary feature) 1
Num 15t and 2nd person pronouns 3
Does | appa:r? (hinars faatiira) N

1.2
Log of the

1.0 /,_:—
bias 0.8

0.6

0.4 /

)4
0.2 —
0.]

-5.0 -10
-1.2 -1.2
0.5 1.5
2.0 0

.7 2.905
J.1

5(0.805)
- 0.69

Learning in logistic regression

How do we get the weights of the model? We learn the

parameters (weights + bias) via learning. This requires 2
components:

1. An objective function or loss function that tells us
distance between the system output and the gold
output. We will use cross-entropy loss.

2. An algorithm for optimizing the objective function. We
will use stochastic gradient descent to minimize the loss
function.

Loss functions

We need to determine for some observation x how close the

classifier output (Y=o (w - x + b)) is to the correct output (y,
which is O or 1).

L(y,y) = how much y differs from the true y

One example is mean squared error

. 1,
Lyse(3,y) = S — y)*?

Loss functions for probabilistic
classification

We use a loss function that prefers the correct class labels of
the training example to be more likely.

Conditional maximum likelihood estimation: Choose
parameters w, b that maximize the (log) probabilities of the
true labels in the training data.

The resulting loss function is the negative log likelihood loss,
more commonly called the cross entropy loss.

Loss functions for probabilistic
classification

For one observation x, let’s maximize the probability of the
correct label p(y|x).

p(ylx) = YA -9
Ify =1, then p(y|x) = 7.
Ify=0,thenp(y|x) =1—7.

Loss functions for probabilistic
classification

Change to logs (still maximizing)
logp(y|x) = log[9” (1 — ']
=ylogy + (1 —y)log(1l -)

This tells us what log likelihood should be maximized. But for
loss functions, we want to minimize things, so we’ll flip the

sign.

Cross-entropy loss

The result is cross-entropy loss:

Lee(,y) = —logp(ylx) = —[ylogy + (1 — y)log(1 —)]

Finally, plug in the definition for y=0 (w - x) + b
Lee(@,y) = —[ylogo(wx+b) + (1 —y)log(1l — o(w-x+b))]

Cross-entropy loss

Why does minimizing this negative log probability do what
we want? We want the loss to be smaller if the model’s
estimate is close to correct, and we want the loss to be

bigger if it is confused.

It'sgHGKEY There are virtually@® surprises , and the writini is second-rate/.

So why was it so{ enjoyable? For one thing, the cast is g

1. Another nice
touch is the music .‘Nas overcome with the urge to get off the couch
start dancing . It sucked@® in , and it'll do the same to G@D.

P(sentiment=1]It’s hokey...) =0.69. Let’s say y=1.

Lce(@,y) = —[ylogo(w-x+b) + (1 —y)log(1l — o(w-x+b))]

= —[log o(w-x+b)]
= —log (0.69) = 0.37

Cross-entropy loss

Why does minimizing this negative log probability do what
we want? We want the loss to be smaller if the model’s
estimate is close to correct, and we want the loss to be

bigger if it is confused.

It'sgHGKEY There are virtually@® surprises , and the writini is second-rate/.

So why was it so{ enjoyable? For one thing, the cast is g

1. Another nice
touch is the music .‘Nas overcome with the urge to get off the couch
start dancing . It sucked@® in , and it'll do the same to G@D.

P(sentiment=1]It’s hokey...) =0.69. Let’s pretend y=0.

Lcg(@,y) = —[ylogo(w-x+b) + (1 —y)log(1l — o(w-x+b))]
= —[log(1 — o(w-x+b))]

= —log (0.31) = 1.17

Cross-entropy loss

Why does minimizing this negative log probability do what
we want? We want the loss to be smaller if the model’s
estimate is close to correct, and we want the loss to be

bigger if it is confused.

It'sgHGKEY There are virtually@® surprises , and the writini is second-rate/.

So why was it so{ enjoyable? For one thing, the cast is g

1. Another nice
touch is the music .‘Nas overcome with the urge to get off the couch
start dancing . It sucked@® in , and it'll do the same to G@D.

If our prediction is correct, If our prediction is incorrect,
then our CE loss is lower then our CE loss is higher

= —log (0.69) = 0.37 —log (0.31) = 1.17

Loss on all training examples

m
log p(training labels) = logl_[p(y(i)pc(i))
i=1

m
=) 1ogp(y©|x®)

=1

m
= - > LGPy ®)

=1

Finding good parameters

We use gradient descent to find good settings for our weights and bias
by minimizing the loss function.

R 1< L
0 = argmin—z Leg(yW, x®): 9)
6 M-

Gradient descent is a method that finds a minimum of a function by
figuring out in which direction (in the space of the parameters) the
function’s slope is rising the most steeply, and moving in the opposite
direction.

Gradient descent

Global v. Local Minimums

For logistic regression, this loss function is conveniently
convex.

A convex function has just one minimum, so there are no
local minima to get stuck in.

So gradient descent starting from any point is guaranteed to
find the minimum.

iteratively find minimum

clop?

Loss L(\‘

slope of loss at wl
1S negative

one step
of gradient
descent

How much should we update
the parameter by?

The magnitude of the amount to move in gradient descent is the value
of the slope weighted by a learning rate n.

A higher/faster learning rate means that we should move w more on

each step. I A+ /k*@)«,\u Q\BQQ‘
d .
@;D =w [xw) |
oA Tl o
\ YIS YAl grtrt
g et R

Many dimensions
Cost(w,b)

Updating each dimension w,

o _%L(f(X;G),y)
s —L(f(x;0),
@L(%,y» _ [FRtEO)

N\

[s J ,
ool Lo lw@).y)
Pm(méﬂd+ X ﬁl\Mn pMVl/\QAZ?/S S

| | . [earn;
The final equation for updating 6 ba n the
gradient is
041 = 6 VL(f(x;0),y)

The Gradient /
V4

To update 6, we need a definition for the gradient VL(f(x; 8), y).

For logistic regression the cross-entropy loss function is:

Lep(w,b) =) —[ylogo(w-x+b)+ (1 —y)log(l —o(w-x+b))]|
The derivative of this function for one observation vector x for a single
weight w; is rufa
dLce (w,b) s W,
ZU2 = [olwexth)—yhy = # valie
! gJ o sl @fe/rcﬁm fagdure j

The gradient is a very intuitive value: the difference between the true y
and our estimate for x, multiplied by the corresponding input value x; .

Average Loss

15 NOIWNO
Cost(w,b)=a2Lc5(}’ Y)
i=1

m
1 . . . :
B _EE yOloga(w-x® +b) + (1 - yD)log(1 — o(w - x¥ + b))
i=1

This is what we want to minimize!!

The Gradient

The loss for a batch of data or an entire dataset is just the average loss

over the m examples
m

1
Cost(w,b) = —EZ)}(‘) loga(w-x® +b)+ (1 —yD)log(1 — o(w-xD + b))

=1

The gradient for multiple data points is the sum of the individual
gradients:

m
OCost(w,b) _ z[(,(w x4 p) =y OO

i=1

Stochastic gradient descent
algorithm

function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns 6
where: L 1s the loss function
f is a function parameterized by 6
X is the set of training inputs x<1>, x(z), - x(")
y is the set of training outputs (labels) y<1), y(z), s y(”>

00

repeat T times
For each tralnlng tuple (x(), y®) (in random order)
Compute $() = f (; 9) # What is our estimated output y?
Compute the loss L(y() y(l)) # How far off is)?(i)) from the true output y()?
g VoL(f(x1;0),y) # How should we move 6 to maximize loss ?
0—06 —ng # go the other way instead

return 6

l

Worked example

Let’s walk though a single step of the gradient descent algorithm. We'll
use a simple sentiment classifier with just 2 features, and 1 training
instance where the correct value is y = 1 (this is a positive review).

X; =3 (count of positive lexicon words)
X, =2 (count of positive negative words)

The initial weights and bias in 6° are all set to 0, and the initial learning
rate nis 0.1:

W1=W2=b=0
n=0.1

The single update step requires that we compute the gradient,
multiplied by the learning rate:

gt+l — gt — UVGL(f(x(i); g)’y(i))

Worked example

The derivative of this function for a single training example x for a
single weight w; is

dLcg(w, b)

=[s(w-x+b) —ylx;

The gradient vector has 3 dimensions, for w,, w,, and b.
For our input, X, =3 and x, =2

X, =2
r0Lce(w,b)7
owq (c(w- x+b) —y)x, (0(0) — 1)x,4 —0.5x4 —1.5
Vb= aLCj—‘f,Wb) =|(cw- x+b) —y)xz| =|(0(0) — Dxz| = [—O.szl = [—1.0]
: o(w- x+b)—y a(0) — 1 —0.5 —0.5

OLce(w,b)
ob

Worked example

Now that we have a gradient V,,,,, we compute the new parameter
vector 8! by moving 6° in the opposite direction from the gradient:

Wq —1.5 .15
ol = [Wzl -7 [—1.0] = [.1
b —0.5 .05

So after one step of gradient descent, the weights have shifted to be:

w, =0.15, w, = 0.1, and b= .05

Mini-batch training

Stochastic gradient descent chooses a single random example at a
time, and updates its weights on that example. As a result the updates
can fluctuate.

An alternate is batch training, which computes the gradient over the
entire dataset. This gives a much better estimate of which direction to
move the weights, but takes a long time to compute.

A commonly used compromise is mini-batch training, where we train
on a small batch. The batch size can be 512 or 1024, often selected
based on computational resources, so that all examples in the mini-
batch can be processed in parallel. The loss is then accumulated.

Regularization

Overfitting is a problem with many machine learning models.
Overfitting results in poor generalization and poor performance on
unseen test set.

In logistic regression, if a feature only occurs in one class then it will get
a high weight. Sometimes we are just modelling noisy factors that just
accidentally correlate with the class.

Regularization is a way to penalize large weights. A regularization term
is added to the loss function.

Lasso regression uses L1 regularization
Ridge regression uses L2 regularization

Multinomial logistic regression

Instead of binary classification, we often want more than two classes.
For sentiment classification we might extend the class labels to be
positive, negative, and neutral.

We want to know the probability of y for each class ¢ € C, p(y = c| x).

To get a proper probability, we will use a generalization of the sigmoid
function called the softmax function.

softmax(z;)) = z— - 1<i<k

Softmax

The softmax function takes in an input vector z = [z,,2,,...,z,] and outputs
a vector of values normalized into probabilities.

e?1 e?2 eZk

k z: 'Ok z-’.”’ k Z:
iz1 €% Xi_q €% i=1€°"

softmax(z) = [

For example, for this input:
z=1[0.6,1.1,-1.5,1.2,3.2, -1.1]
Softmax will output:

[0.056, 0.090, 0.007, 0.099, 0.74, 0.010]

Next time: Neural Nets

RN
Vi
‘ei“&i%“‘,

Beie o“'{/

KK i
&

POREEA

SN

'/‘(\Vr’\¥§

Output layer

Hidden layer

Hidden layer

Input layer

