
Neural Networks
part 2
JURAFSKY AND MARTIN CHAPTERS 7 AND 9

Reminders

HOMEWORK 5 IS DUE
TONIGHT BY 11:50PM

HW6 (NN-LM) HAS
BEEN RELEASED

QUIZZES DON’T HAVE
LATE DAYS

Neural Network
LMs part 2
READ CHAPTERS 7 AND 9 IN
JURAFSKY AND MARTIN

READ CHAPTER 4 AND 14
FROM YOAV GOLDBERG’S
BOOK NEURAL NETWORKS
METHODS FOR NLP

Series ISSN 1947-4040

store.morganclaypool.com

Series Editor: Graeme Hirst, University of Toronto

Neural Network Methods for Natural Language Processing
Yoav Goldberg, Bar Ilan University
Neural networks are a family of powerful machine learning models. !is book focuses on the
application of neural network models to natural language data. !e "rst half of the book (Parts
I and II) covers the basics of supervised machine learning and feed-forward neural networks, the
basics of working with machine learning over language data, and the use of vector-based rather
than symbolic representations for words. It also covers the computation-graph abstraction, which
allows to easily de"ne and train arbitrary neural networks, and is the basis behind the design of
contemporary neural network software libraries.
 !e second part of the book (Parts III and IV) introduces more specialized neural network
architectures, including 1D convolutional neural networks, recurrent neural networks, conditioned-
generation models, and attention-based models. !ese architectures and techniques are the driving
force behind state-of-the-art algorithms for machine translation, syntactic parsing, and many other
applications. Finally, we also discuss tree-shaped networks, structured prediction, and the prospects
of multi-task learning.

ABOUT SYNTHESIS
!is volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis lectures
provide concise original presentations of important research and
development topics, published quickly in digital and print formats. For
more information, visit our website: http://store.morganclaypool.com

GOLDBERG
NEURAL NETW

ORK M
ETH

ODS
FOR NATURAL LANGUAGE PRO

CESSING
M

ORGAN &
 CLAYPO

OL

Recap: Neural Networks
The building block of a neural network is a single computational unit. A
unit takes a set of real valued numbers as input, performs some
computation.

7.1 • UNITS 3

Figure 7.1 The sigmoid function takes a real value and maps it to the range [0,1]. Because
it is nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

w = [0.2,0.3,0.9]
b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w · x+b) =
1

1+ e�(w·x+b) =
1

1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5) = e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A
function that is very similar but almost always better is the tanh function showntanh

in Fig. 7.3a; tanh is a variant of the sigmoid that ranges from -1 to +1:

y =
ez � e�z

ez + e�z (7.6)

The simplest activation function, and perhaps the most commonly used, is the
rectified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU

Recap: Feed-Forward NN
The simplest kind of NN is the Feed-Forward Neural Network

Multilayer network, all units are usually fully-connected, and no cycles.

The outputs from each layer are passed to units in the next higher layer,
and no outputs are passed back to lower layers. 8 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

x1 x2

h1 h2

y1

xn0
…

h3
hn1…

+1

b

…
U

W

y2 yn2

Figure 7.8 A simple 2-layer feedforward network, with one hidden layer, one output layer,
and one input layer (the input layer is usually not counted when enumerating layers).

the jth hidden unit h j.
The advantage of using a single matrix W for the weights of the entire layer is

that now the hidden layer computation for a feedforward network can be done very
efficiently with simple matrix operations. In fact, the computation only has three
steps: multiplying the weight matrix by the input vector x, adding the bias vector b,
and applying the activation function g (such as the sigmoid, tanh, or ReLU activation
function defined above).

The output of the hidden layer, the vector h, is thus the following, using the
sigmoid function s :

h = s(Wx+b) (7.8)

Notice that we’re applying the s function here to a vector, while in Eq. 7.3 it was
applied to a scalar. We’re thus allowing s(·), and indeed any activation function
g(·), to apply to a vector element-wise, so g[z1,z2,z3] = [g(z1),g(z2),g(z3)].

Let’s introduce some constants to represent the dimensionalities of these vectors
and matrices. We’ll refer to the input layer as layer 0 of the network, and have n0
represent the number of inputs, so x is a vector of real numbers of dimension n0,
or more formally x 2 Rn0 . Let’s call the hidden layer layer 1 and the output layer
layer 2. The hidden layer has dimensionality n1, so h 2 Rn1 and also b 2 Rn1 (since
each hidden unit can take a different bias value). And the weight matrix W has
dimensionality W 2 Rn1⇥n0 .

Take a moment to convince yourself that the matrix multiplication in Eq. 7.8 will
compute the value of each h j as s

�Pnx
i=1 wi jxi +b j

�
.

As we saw in Section 7.2, the resulting value h (for hidden but also for hypoth-
esis) forms a representation of the input. The role of the output layer is to take
this new representation h and compute a final output. This output could be a real-
valued number, but in many cases the goal of the network is to make some sort of
classification decision, and so we will focus on the case of classification.

If we are doing a binary task like sentiment classification, we might have a single
output node, and its value y is the probability of positive versus negative sentiment.
If we are doing multinomial classification, such as assigning a part-of-speech tag, we
might have one output node for each potential part-of-speech, whose output value
is the probability of that part-of-speech, and the values of all the output nodes must
sum to one. The output layer thus gives a probability distribution across the output

Layer 0 (input layer)

Layer 1 (hidden layer)

Layer 2 (output layer)

Recap: Language Modeling
Goal: Learn a function that returns the joint probability

Primary difficulty:

1. There are too many parameters to accurately estimate.

2. In n-gram-based models we fail to generalize to related
words / word sequences that we have observed.

Recap: Curse of dimensionality
AKA sparse statistics
Suppose we want a joint distribution over 10 words.
Suppose we have a vocabulary of size 100,000.

100,00010 =1050 parameters

This is too high to estimate from data.

Recap: Chain rule
In LMs we use the chain rule to get the conditional
probability of the next word in the sequence given all of the
previous words:

𝑃(𝑤$𝑤%𝑤&…𝑤') = ∏'+$
, 𝑃(𝑤'|𝑤$…𝑤'.$)

What assumption do we make in n-gram LMs to simplify
this?

The probability of the next word only depends on the
previous n-1 words.

A small n makes it easier for us to get an estimate of the
probability from data.

Recap: N-gram LMs
Estimate the probability of the next word in a sequence, given the
entire prior context P(wt|w1

t−1). We use the Markov assumption
approximate the probability based on the n-1 previous words.

For a 4-gram model, we use MLE estimate the probability a large
corpus.

𝑃 𝑤'|𝑤'.&, 𝑤'.%, 𝑤'.$ = 0123' 4567 45684569 45
0123' 4567 45684569

𝑃 𝑤' 𝑤$'.$) ≈ 𝑃 𝑤' 𝑤'.;<$'.$)

Probability tables
We construct tables to look up the probability of seeing a
word given a history.

The tables only store observed sequences.
What happens when we have a new (unseen) combination
of n words?

curse of P(wt | wt-n … wt-1)

dimensionality

azure

knowledge

oak

Unseen sequences
What happens when we have a new (unseen) combination
of n words?

1. Back-off

2. Smoothing / interpolation

We are basically just stitching together short sequences of
observed words.

Let’s try generalizing.

Intuition: Take a sentence like

The cat is walking in the bedroom

And use it when we assign probabilities to similar sentences
like

The dog is running around the room

Alternate idea

Use word embeddings!

How can we use embeddings to estimate language model probabilities?

Similarity of words / contexts
sim (cat , dog)

Vector for dogVector for cat

p(cat | please feed the)

Concatenate these 3 vectors together, use that as input
vector to a feed forward neural network

Compute the probability of all words in the vocabulary
with a softmax on the output layer

Neural network with
embeddings as input7.5 • NEURAL LANGUAGE MODELS 17

h1 h2

y1

h3 hdh…

…

U

W

y42 y|V|

Projection layer 1⨉3d
concatenated embeddings

for context words

Hidden layer

Output layer P(w|u) …

in thehole... ...ground there lived

word 42
embedding for

word 35
embedding for

word 9925
embedding for

word 45180

wt-1wt-2 wtwt-3

dh⨉3d

1⨉dh

|V|⨉dh P(wt=V42|wt-3,wt-2,wt-3)

1⨉|V|

Figure 7.12 A simplified view of a feedforward neural language model moving through a text. At each
timestep t the network takes the 3 context words, converts each to a d-dimensional embedding, and concatenates
the 3 embeddings together to get the 1⇥Nd unit input layer x for the network. These units are multiplied by
a weight matrix W and bias vector b and then an activation function to produce a hidden layer h, which is then
multiplied by another weight matrix U . (For graphic simplicity we don’t show b in this and future pictures.)
Finally, a softmax output layer predicts at each node i the probability that the next word wt will be vocabulary
word Vi. (This picture is simplified because it assumes we just look up in an embedding dictionary E the
d-dimensional embedding vector for each word, precomputed by an algorithm like word2vec.)

classification, or translation, or parsing) places strong constraints on what makes a
good representation.

Let’s therefore show an architecture that allows the embeddings to be learned.
To do this, we’ll add an extra layer to the network, and propagate the error all the
way back to the embedding vectors, starting with embeddings with random values
and slowly moving toward sensible representations.

For this to work at the input layer, instead of pre-trained embeddings, we’re
going to represent each of the N previous words as a one-hot vector of length |V |, i.e.,
with one dimension for each word in the vocabulary. A one-hot vector is a vectorone-hot vector
that has one element equal to 1—in the dimension corresponding to that word’s
index in the vocabulary— while all the other elements are set to zero.

Thus in a one-hot representation for the word “toothpaste”, supposing it happens
to have index 5 in the vocabulary, x5 is one and and xi = 0 8i 6= 5, as shown here:

[0 0 0 0 1 0 0 ... 0 0 0 0]
1 2 3 4 5 6 7 |V|

Fig. 7.13 shows the additional layers needed to learn the embeddings during LM
training. Here the N=3 context words are represented as 3 one-hot vectors, fully
connected to the embedding layer via 3 instantiations of the embedding matrix E.
Note that we don’t want to learn separate weight matrices for mapping each of the 3
previous words to the projection layer, we want one single embedding dictionary E
that’s shared among these three. That’s because over time, many different words will
appear as wt�2 or wt�1, and we’d like to just represent each word with one vector,
whichever context position it appears in. The embedding weight matrix E thus has

Wt-1)

A Neural Probabilistic LM
In NIPS 2003, Yoshua Begio and his colleagues introduced a neural
probabilistic language model
1. They used a vector space model where the words are vectors

with real values ℝm. m=30, 60, 100. This gave a way to
compute word similarity.

2. They defined a function that returns a joint probability of
words in a sequence based on a sequence of these vectors.

3. Their model simultaneously learned the word representations
and the probability function from data.

Seeing one of the cat/dog sentences allows them to increase the
probability for that sentence and its combinatorial # of
“neighbor” sentences in vector space.

A Neural Probabilistic LM
Given:

A training set w1 … wt where wt ∈V

Learn:
f(w1 … wt) = P(wt|w1 … wt-1)
Subject to giving a high probability to an unseen text/dev set
(e.g. minimizing the perplexity)

Constraint:
Create a proper probability distribution (e.g. sums to 1) so that
we can take the product of conditional probabilities to get the
joint probability of a sentence

Neural net that learns
embeddings18 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

h1 h2

y1

h3 hdh…

…

U

W

y42 y|V|

Projection layer 1⨉3d

Hidden layer

Output layer
P(w|context)

…

in thehole... ...ground there lived

word 42

wt-1wt-2 wtwt-3

dh⨉3d

1⨉dh

|V|⨉dh

P(wt=V42|wt-3,wt-2,wt-3)

1⨉|V|

Input layer
one-hot vectors

index
word 35

0 0 1 00

1 |V|35

0 0 1 00

1 |V|45180

0 0 1 00

1 |V|9925

0 0

index
word 9925

index
word 45180

E

1⨉|V|

d⨉|V| E is shared
across words

Figure 7.13 Learning all the way back to embeddings. Notice that the embedding matrix E is shared among
the 3 context words.

a row for each word, each a vector of d dimensions, and hence has dimensionality
V ⇥d.

Let’s walk through the forward pass of Fig. 7.13.
1. Select three embeddings from E: Given the three previous words, we look

up their indices, create 3 one-hot vectors, and then multiply each by the em-
bedding matrix E. Consider wt�3. The one-hot vector for ‘the’ (index 35) is
multiplied by the embedding matrix E, to give the first part of the first hidden
layer, called the projection layer. Since each row of the input matrix E is justprojection layer

an embedding for a word, and the input is a one-hot column vector xi for word
Vi, the projection layer for input w will be Exi = ei, the embedding for word i.
We now concatenate the three embeddings for the context words.

2. Multiply by W: We now multiply by W (and add b) and pass through the
rectified linear (or other) activation function to get the hidden layer h.

3. Multiply by U: h is now multiplied by U
4. Apply softmax: After the softmax, each node i in the output layer estimates

the probability P(wt = i|wt�1,wt�2,wt�3)

In summary, if we use e to represent the projection layer, formed by concate-
nating the 3 embeddings for the three context vectors, the equations for a neural
language model become:

e = (Ex1,Ex2, ...,Ex) (7.27)

h = s(We+b) (7.28)

z = Uh (7.29)

y = softmax(z) (7.30)

Wt-1)

One-hot vectors
To learn the embeddings, we added an extra layer to the network.
Instead of pre-trained embeddings as the input layer, we instead use
one-hot vectors.

These are then used to look up a row vector in the embedding matrix E,
which is of size d by |V|.

With this small change, we now can
learn the emebddings of words.

7.5 • NEURAL LANGUAGE MODELS 17

h1 h2

y1

h3 hdh…

…

U

W

y42 y|V|

Projection layer 1⨉3d
concatenated embeddings

for context words

Hidden layer

Output layer P(w|u) …

in thehole... ...ground there lived

word 42
embedding for

word 35
embedding for

word 9925
embedding for

word 45180

wt-1wt-2 wtwt-3

dh⨉3d

1⨉dh

|V|⨉dh P(wt=V42|wt-3,wt-2,wt-3)

1⨉|V|

Figure 7.12 A simplified view of a feedforward neural language model moving through a text. At each
timestep t the network takes the 3 context words, converts each to a d-dimensional embedding, and concatenates
the 3 embeddings together to get the 1⇥Nd unit input layer x for the network. These units are multiplied by
a weight matrix W and bias vector b and then an activation function to produce a hidden layer h, which is then
multiplied by another weight matrix U . (For graphic simplicity we don’t show b in this and future pictures.)
Finally, a softmax output layer predicts at each node i the probability that the next word wt will be vocabulary
word Vi. (This picture is simplified because it assumes we just look up in an embedding dictionary E the
d-dimensional embedding vector for each word, precomputed by an algorithm like word2vec.)

classification, or translation, or parsing) places strong constraints on what makes a
good representation.

Let’s therefore show an architecture that allows the embeddings to be learned.
To do this, we’ll add an extra layer to the network, and propagate the error all the
way back to the embedding vectors, starting with embeddings with random values
and slowly moving toward sensible representations.

For this to work at the input layer, instead of pre-trained embeddings, we’re
going to represent each of the N previous words as a one-hot vector of length |V |, i.e.,
with one dimension for each word in the vocabulary. A one-hot vector is a vectorone-hot vector
that has one element equal to 1—in the dimension corresponding to that word’s
index in the vocabulary— while all the other elements are set to zero.

Thus in a one-hot representation for the word “toothpaste”, supposing it happens
to have index 5 in the vocabulary, x5 is one and and xi = 0 8i 6= 5, as shown here:

[0 0 0 0 1 0 0 ... 0 0 0 0]
1 2 3 4 5 6 7 |V|

Fig. 7.13 shows the additional layers needed to learn the embeddings during LM
training. Here the N=3 context words are represented as 3 one-hot vectors, fully
connected to the embedding layer via 3 instantiations of the embedding matrix E.
Note that we don’t want to learn separate weight matrices for mapping each of the 3
previous words to the projection layer, we want one single embedding dictionary E
that’s shared among these three. That’s because over time, many different words will
appear as wt�2 or wt�1, and we’d like to just represent each word with one vector,
whichever context position it appears in. The embedding weight matrix E thus has

18 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

h1 h2

y1

h3 hdh…

…

U

W

y42 y|V|

Projection layer 1⨉3d

Hidden layer

Output layer
P(w|context)

…

in thehole... ...ground there lived

word 42

wt-1wt-2 wtwt-3

dh⨉3d

1⨉dh

|V|⨉dh

P(wt=V42|wt-3,wt-2,wt-3)

1⨉|V|

Input layer
one-hot vectors

index
word 35

0 0 1 00

1 |V|35

0 0 1 00

1 |V|45180

0 0 1 00

1 |V|9925

0 0

index
word 9925

index
word 45180

E

1⨉|V|

d⨉|V| E is shared
across words

Figure 7.13 Learning all the way back to embeddings. Notice that the embedding matrix E is shared among
the 3 context words.

a row for each word, each a vector of d dimensions, and hence has dimensionality
V ⇥d.

Let’s walk through the forward pass of Fig. 7.13.
1. Select three embeddings from E: Given the three previous words, we look

up their indices, create 3 one-hot vectors, and then multiply each by the em-
bedding matrix E. Consider wt�3. The one-hot vector for ‘the’ (index 35) is
multiplied by the embedding matrix E, to give the first part of the first hidden
layer, called the projection layer. Since each row of the input matrix E is justprojection layer

an embedding for a word, and the input is a one-hot column vector xi for word
Vi, the projection layer for input w will be Exi = ei, the embedding for word i.
We now concatenate the three embeddings for the context words.

2. Multiply by W: We now multiply by W (and add b) and pass through the
rectified linear (or other) activation function to get the hidden layer h.

3. Multiply by U: h is now multiplied by U
4. Apply softmax: After the softmax, each node i in the output layer estimates

the probability P(wt = i|wt�1,wt�2,wt�3)

In summary, if we use e to represent the projection layer, formed by concate-
nating the 3 embeddings for the three context vectors, the equations for a neural
language model become:

e = (Ex1,Ex2, ...,Ex) (7.27)

h = s(We+b) (7.28)

z = Uh (7.29)

y = softmax(z) (7.30)

Forward pass
1. Select embeddings from E for the
three context words (the ground there)
and concatenate them together

2. Multiply by W and add b (not
shown), and pass it through an
activation function (sigmoid, ReLU, etc)
to get the hidden layer h.

3. Multiply by U (the weight matrix for
the hidden layer) to get the output
layer, which is of size 1 by |V|.

4. Apply softmax to get the probability.
Each node i in the output layer
estimates the probability P(wt =
i|wt−1,wt−2,wt−3)

18 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

h1 h2

y1

h3 hdh…

…

U

W

y42 y|V|

Projection layer 1⨉3d

Hidden layer

Output layer
P(w|context)

…

in thehole... ...ground there lived

word 42

wt-1wt-2 wtwt-3

dh⨉3d

1⨉dh

|V|⨉dh

P(wt=V42|wt-3,wt-2,wt-3)

1⨉|V|

Input layer
one-hot vectors

index
word 35

0 0 1 00

1 |V|35

0 0 1 00

1 |V|45180

0 0 1 00

1 |V|9925

0 0

index
word 9925

index
word 45180

E

1⨉|V|

d⨉|V| E is shared
across words

Figure 7.13 Learning all the way back to embeddings. Notice that the embedding matrix E is shared among
the 3 context words.

a row for each word, each a vector of d dimensions, and hence has dimensionality
V ⇥d.

Let’s walk through the forward pass of Fig. 7.13.
1. Select three embeddings from E: Given the three previous words, we look

up their indices, create 3 one-hot vectors, and then multiply each by the em-
bedding matrix E. Consider wt�3. The one-hot vector for ‘the’ (index 35) is
multiplied by the embedding matrix E, to give the first part of the first hidden
layer, called the projection layer. Since each row of the input matrix E is justprojection layer

an embedding for a word, and the input is a one-hot column vector xi for word
Vi, the projection layer for input w will be Exi = ei, the embedding for word i.
We now concatenate the three embeddings for the context words.

2. Multiply by W: We now multiply by W (and add b) and pass through the
rectified linear (or other) activation function to get the hidden layer h.

3. Multiply by U: h is now multiplied by U
4. Apply softmax: After the softmax, each node i in the output layer estimates

the probability P(wt = i|wt�1,wt�2,wt�3)

In summary, if we use e to represent the projection layer, formed by concate-
nating the 3 embeddings for the three context vectors, the equations for a neural
language model become:

e = (Ex1,Ex2, ...,Ex) (7.27)

h = s(We+b) (7.28)

z = Uh (7.29)

y = softmax(z) (7.30)

𝑒 = 𝐸𝑥$, 𝐸𝑥%, … , 𝐸𝑥
ℎ = 𝜎 𝑊𝑒 + 𝑏
𝑧 = 𝑈ℎ
𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)

Training with backpropagation
To train the models we need to find good settings
for all of the parameters θ = E,W,U,b.

How do we do it? Gradient descent using error
backpropagation on the computation graph to
compute the gradient.

Since the final prediction depends on many
intermediate layers, and since each layer has its own
weights, we need to know how much to update
each layer.

Error backpropagation allows us to assign
proportional blame (compute the error term)
back to the previous hidden layers.

Series ISSN 1947-4040

store.morganclaypool.com

Series Editor: Graeme Hirst, University of Toronto

Neural Network Methods for Natural Language Processing
Yoav Goldberg, Bar Ilan University
Neural networks are a family of powerful machine learning models. !is book focuses on the
application of neural network models to natural language data. !e "rst half of the book (Parts
I and II) covers the basics of supervised machine learning and feed-forward neural networks, the
basics of working with machine learning over language data, and the use of vector-based rather
than symbolic representations for words. It also covers the computation-graph abstraction, which
allows to easily de"ne and train arbitrary neural networks, and is the basis behind the design of
contemporary neural network software libraries.
 !e second part of the book (Parts III and IV) introduces more specialized neural network
architectures, including 1D convolutional neural networks, recurrent neural networks, conditioned-
generation models, and attention-based models. !ese architectures and techniques are the driving
force behind state-of-the-art algorithms for machine translation, syntactic parsing, and many other
applications. Finally, we also discuss tree-shaped networks, structured prediction, and the prospects
of multi-task learning.

ABOUT SYNTHESIS
!is volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis lectures
provide concise original presentations of important research and
development topics, published quickly in digital and print formats. For
more information, visit our website: http://store.morganclaypool.com

GOLDBERG
NEURAL NETW

ORK M
ETH

ODS
FOR NATURAL LANGUAGE PRO

CESSING
M

ORGAN &
 CLAYPO

OL

For information about backpropogation,
check out Chapter 5 of this book à

Training data
The training examples are simply word k-grams from the corpus

The identities of the first k-1 words are used as features, and the last
word is used as the target label for the classification.

Conceptually, the model is trained using cross-entropy loss.

Training the Neural LM
Use a large text to train. Start with random weights Iteratively moving
through the text predicting each word wt .

At each word wt, the cross-entropy (negative log likelihood) loss is:

The gradient for the loss is:

𝜃'<$ = 𝜃' − 𝜂 T .UVW X 45 4569,…,456YZ9)
T[

The gradient can be computed in any standard neural network
framework which will then backpropagate through U , W , b, E.

The model learns both a function to predict the probability of the next
word, and it learns word embeddings too!

𝐿 = − log 𝑝 𝑤' 𝑤'.$, … , 𝑤'.3<$)

12Word Embeddings

Philipp Koehn Machine Translation: Neural Networks 10 October 2017

Learned embeddings
When the ~50 dimensional vectors that result from training
a neural LM are projected down to 2-dimensions, we see a
lot of words that are intuitively similar are close together.

Advantages of NN LMs
Better results. They achieve better perplexity scores than SOTA n-gram
LMs.

Larger N. NN LMs can scale to much larger orders of n. This is
achievable because parameters are associated only with individual
words, and not with n-grams.

They generalize across contexts. For example, by observing that the
words blue, green, red, black, etc. appear in similar contexts, the model
will be able to assign a reasonable score to the green car even though it
never observed in training, because it did observe blue car and red car.

A by-product of training are word embeddings!

Disadvantage of Feedforward
Neural Networks
Bengio (2003) used a Feedfoward neural network for their language
model. This means is that it operates only on fixed size inputs.

For sequences longer than that size, it slides a window over the input,
and makes predictions as it goes.

The decision for one window has no impact on the later decisions.

This shares the weakness of Markov approaches, because it limits the
context to the window size.

To fix this, we’re going to look at recurrent neural networks.

Current state of the art neural
LMs
ELMo
GPT
BERT
GPT-2

https://allennlp.org/elmo
https://blog.openai.com/language-unsupervised/
https://arxiv.org/pdf/1810.04805.pdf
https://blog.openai.com/better-language-models/

Recurrent Neural Networks
Language is an inherently temporal phenomenon.

Logistic regression and Feedforward NNs are not temporal in nature.
They use fixed size vectors that have simultaneous access to the full
input all at once.

Work-arounds like a sliding window aren’t great, because

1. The decision made for one window has no impact on later decisions

2. It limits the context being used

3. Fails to capture important aspects of language like consistency and
long distance dependencies

Recurrent Neural Networks
A recurrent neural network (RNN) is any network that contains a cycle
within its network.

In such networks the value of a unit can be dependent on earlier
outputs as an input.

RNNs have proven extremely effective when applied to NLP.9.1 • SIMPLE RECURRENT NEURAL NETWORKS 3

ht

yt

xt

Figure 9.2 Simple recurrent neural network after Elman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden
layer depends on the current input as well as the activation value of the hidden layer from the
previous time step.

tion value for a layer of hidden units. This hidden layer is, in turn, used to calculate
a corresponding output, yt . In a departure from our earlier window-based approach,
sequences are processed by presenting one element at a time to the network. The
key difference from a feedforward network lies in the recurrent link shown in the
figure with the dashed line. This link augments the input to the computation at the
hidden layer with the activation value of the hidden layer from the preceding point

in time.
The hidden layer from the previous time step provides a form of memory, or

context, that encodes earlier processing and informs the decisions to be made at
later points in time. Critically, this architecture does not impose a fixed-length limit
on this prior context; the context embodied in the previous hidden layer includes
information extending back to the beginning of the sequence.

Adding this temporal dimension may make RNNs appear to be more exotic than
non-recurrent architectures. But in reality, they’re not all that different. Given an
input vector and the values for the hidden layer from the previous time step, we’re
still performing the standard feedforward calculation. To see this, consider Fig. 9.3
which clarifies the nature of the recurrence and how it factors into the computation
at the hidden layer. The most significant change lies in the new set of weights,
U , that connect the hidden layer from the previous time step to the current hidden
layer. These weights determine how the network should make use of past context in
calculating the output for the current input. As with the other weights in the network,
these connections are trained via backpropagation.

9.1.1 Inference in Simple RNNs
Forward inference (mapping a sequence of inputs to a sequence of outputs) in an
RNN is nearly identical to what we’ve already seen with feedforward networks. To
compute an output yt for an input xt , we need the activation value for the hidden
layer ht . To calculate this, we multiply the input xt with the weight matrix W , and
the hidden layer from the previous time step ht�1 with the weight matrix U . We
add these values together and pass them through a suitable activation function, g,
to arrive at the activation value for the current hidden layer, ht . Once we have the
values for the hidden layer, we proceed with the usual computation to generate the

Memory
We use a hidden layer from a preceding point in time to augment the
input layer.

This hidden layer from the preceding point in time provides a form of
memory or context.

This architecture does not impose a fixed-length limit on its prior
context.

As a result, information can come from all the way back at the
beginning of the input sequence. Thus we get away from the Markov
assumption.

RNN as a feedforward network4 CHAPTER 9 • SEQUENCE PROCESSING WITH RECURRENT NETWORKS

U

V

W

yt

xt

ht

ht-1

Figure 9.3 Simple recurrent neural network illustrated as a feedforward network.

output vector.

ht = g(Uht�1 +Wxt)

yt = f (V ht)

In the commonly encountered case of soft classification, computing yt consists of
a softmax computation that provides a normalized probability distribution over the
possible output classes.

yt = softmax(V ht)

The fact that the computation at time t requires the value of the hidden layer
from time t�1 mandates an incremental inference algorithm that proceeds from the
start of the sequence to the end as illustrated in Fig. 9.4. The sequential nature of
simple recurrent networks can also be seen by unrolling the network in time as is
shown in Fig. 9.5. In this figure, the various layers of units are copied for each time
step to illustrate that they will have differing values over time. However, the various
weight matrices are shared across time.

function FORWARDRNN(x, network) returns output sequence y

h0 0
for i 1 to LENGTH(x) do

hi g(U hi�1 + W xi)
yi f (V hi)

return y

Figure 9.4 Forward inference in a simple recurrent network. The matrices U , V and W are
shared across time, while new values for h and y are calculated with each time step.

9.1.2 Training
As with feedforward networks, we’ll use a training set, a loss function, and back-
propagation to obtain the gradients needed to adjust the weights in these recurrent
networks. As shown in Fig. 9.3, we now have 3 sets of weights to update: W , the

Forward inference

This allows us to have an output sequence equal in length to the input
sequence.

4 CHAPTER 9 • SEQUENCE PROCESSING WITH RECURRENT NETWORKS

U

V

W

yt

xt

ht

ht-1

Figure 9.3 Simple recurrent neural network illustrated as a feedforward network.

output vector.

ht = g(Uht�1 +Wxt)

yt = f (V ht)

In the commonly encountered case of soft classification, computing yt consists of
a softmax computation that provides a normalized probability distribution over the
possible output classes.

yt = softmax(V ht)

The fact that the computation at time t requires the value of the hidden layer
from time t�1 mandates an incremental inference algorithm that proceeds from the
start of the sequence to the end as illustrated in Fig. 9.4. The sequential nature of
simple recurrent networks can also be seen by unrolling the network in time as is
shown in Fig. 9.5. In this figure, the various layers of units are copied for each time
step to illustrate that they will have differing values over time. However, the various
weight matrices are shared across time.

function FORWARDRNN(x, network) returns output sequence y

h0 0
for i 1 to LENGTH(x) do

hi g(U hi�1 + W xi)
yi f (V hi)

return y

Figure 9.4 Forward inference in a simple recurrent network. The matrices U , V and W are
shared across time, while new values for h and y are calculated with each time step.

9.1.2 Training
As with feedforward networks, we’ll use a training set, a loss function, and back-
propagation to obtain the gradients needed to adjust the weights in these recurrent
networks. As shown in Fig. 9.3, we now have 3 sets of weights to update: W , the

Unrolled RNN9.1 • SIMPLE RECURRENT NEURAL NETWORKS 5

U

V

W

U

V

W

U

V

W

x1

x2

x3y1

y2

y3

h1

h3

h2

h0

Figure 9.5 A simple recurrent neural network shown unrolled in time. Network layers are copied for each
time step, while the weights U , V and W are shared in common across all time steps.

weights from the input layer to the hidden layer, U , the weights from the previous
hidden layer to the current hidden layer, and finally V , the weights from the hidden
layer to the output layer.

Before going on, let’s first review some of the notation that we introduced in
Chapter 7. Assuming a network with an input layer x and a non-linear activation
function g, a

[i] refers to the activation value from a layer i, which is the result of
applying g to z

[i], the weighted sum of the inputs to that layer.
Fig. 9.5 illustrates two considerations that we didn’t have to worry about with

backpropagation in feedforward networks. First, to compute the loss function for
the output at time t we need the hidden layer from time t � 1. Second, the hidden
layer at time t influences both the output at time t and the hidden layer at time t +1
(and hence the output and loss at t + 1). It follows from this that to assess the error
accruing to ht , we’ll need to know its influence on both the current output as well as

the ones that follow.
Consider the situation where we are examining an input/output pair at time 2 as

shown in Fig. 9.6. What do we need to compute the gradients required to update
the weights U , V , and W here? Let’s start by reviewing how we compute the gra-
dients required to update V since this computation is unchanged from feedforward
networks. To review from Chapter 7, we need to compute the derivative of the loss
function L with respect to the weights V . However, since the loss is not expressed
directly in terms of the weights, we apply the chain rule to get there indirectly.

∂L

∂V
=

∂L

∂a

∂a

∂ z

∂ z

∂V

The first term on the right is the derivative of the loss function with respect to
the network output, a. The second term is the derivative of the network output with
respect to the intermediate network activation z, which is a function of the activation

time

Training RNNs
Just like with feedforward networks, we’ll use a training set, a loss
function, and back-propagation to get the gradients needed to adjust
the weights in an RNN.

The weights we need to update are:

W – the weights from the input layer to the hidden layer
U – the weights from the previous hidden layer to the current hidden
layer
V – the weights from the hidden layer to the output layer

Training RNNs
New considerations:

1. to compute the loss function for the output at time t we need the
hidden layer from time t − 1.

2. The hidden layer at time t influences both the output at time t and
the hidden layer at time t + 1 (and hence the output and loss at t+1)

To assess the error accruing to ht , we’ll need to know its influence on
both the current output as well as the ones that follow.

Backpropagation of errors

6 CHAPTER 9 • SEQUENCE PROCESSING WITH RECURRENT NETWORKS

function g. The final term in our application of the chain rule is the derivative of the
network activation with respect to the weights V , which is the activation value of the
current hidden layer ht .

It’s useful here to use the first two terms to define d , an error term that represents
how much of the scalar loss is attributable to each of the units in the output layer.

dout =
∂L

∂a

∂a

∂ z
(9.1)

dout = L
0
g
0(z) (9.2)

Therefore, the final gradient we need to update the weight matrix V is just:

∂L

∂V
= doutht (9.3)

U

V

W

U

V

W

U

V

W

x1

x2

x3y1

y2

y3

h1

h3

h2

h0

t1

t2

t3

Figure 9.6 The backpropagation of errors in a simple RNN ti vectors represent the targets for each element
of the sequence from the training data. The red arrows illustrate the flow of backpropagated errors required to
calculate the gradients for U , V and W at time 2. The two incoming arrows converging on h2 signal that these
errors need to be summed.

Moving on, we need to compute the corresponding gradients for the weight ma-
trices W and U : ∂L

∂W
and ∂L

∂U
. Here we encounter the first substantive change from

feedforward networks. The hidden state at time t contributes to the output and asso-
ciated error at time t and to the output and error at the next time step, t +1. Therefore,
the error term, dh, for the hidden layer must be the sum of the error term from the
current output and its error from the next time step.

dh = g
0(z)V dout +dnext

Given this total error term for the hidden layer, we can compute the gradients for
the weights U and W using the chain rule as we did in Chapter 7.

time

Vanishing/Exploding Gradients
In deep networks, it is common for the error gradients to either vanish
or explode as they backpropagate. The problem is more severe in
deeper networks, especially in RNNs.

Dealing with vanishing gradients is still an open research question.
Solutions include:

1. making the networks shallower

2. step-wise training where first layers are trained and then fixed

3. performing batch-normalization

4. using specialized NN architectures like LSTM and GRU

Recurrent Neural Language
Models
Unlike n-gram LMs and feedforward networks with sliding windows,
RNN LMs don’t use a fixed size context window.

They predict the next word in a sequence by using the current word and
the previous hidden state as input.

The hidden state embodies information about all of the preceding
words all the way back to the beginning of the sequence.

Thus they can potentially take more context into account than n-gram
LMs and NN LMs that use a sliding window.

Autoregressive generation
with an RNN LM

10 CHAPTER 9 • SEQUENCE PROCESSING WITH RECURRENT NETWORKS

In a

<s>

RNN

hole

In a hole

?Sampled Word

Softmax

Embedding

Input Word

Figure 9.7 Autoregressive generation with an RNN-based neural language model.

task is part-of-speech tagging, discussed in detail in Chapter 8. In an RNN approach
to POS tagging, inputs are word embeddings and the outputs are tag probabilities
generated by a softmax layer over the tagset, as illustrated in Fig. 9.8.

In this figure, the inputs at each time step are pre-trained word embeddings cor-
responding to the input tokens. The RNN block is an abstraction that represents
an unrolled simple recurrent network consisting of an input layer, hidden layer, and
output layer at each time step, as well as the shared U , V and W weight matrices that
comprise the network. The outputs of the network at each time step represent the
distribution over the POS tagset generated by a softmax layer.

To generate a tag sequence for a given input, we can run forward inference over
the input sequence and select the most likely tag from the softmax at each step. Since
we’re using a softmax layer to generate the probability distribution over the output

Janet will back

RNN

the bill

Figure 9.8 Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over
the part-of-speech tags as output at each time step.

Tag Sequences

10 CHAPTER 9 • SEQUENCE PROCESSING WITH RECURRENT NETWORKS

In a

<s>

RNN

hole

In a hole

?Sampled Word

Softmax

Embedding

Input Word

Figure 9.7 Autoregressive generation with an RNN-based neural language model.

task is part-of-speech tagging, discussed in detail in Chapter 8. In an RNN approach
to POS tagging, inputs are word embeddings and the outputs are tag probabilities
generated by a softmax layer over the tagset, as illustrated in Fig. 9.8.

In this figure, the inputs at each time step are pre-trained word embeddings cor-
responding to the input tokens. The RNN block is an abstraction that represents
an unrolled simple recurrent network consisting of an input layer, hidden layer, and
output layer at each time step, as well as the shared U , V and W weight matrices that
comprise the network. The outputs of the network at each time step represent the
distribution over the POS tagset generated by a softmax layer.

To generate a tag sequence for a given input, we can run forward inference over
the input sequence and select the most likely tag from the softmax at each step. Since
we’re using a softmax layer to generate the probability distribution over the output

Janet will back

RNN

the bill

Figure 9.8 Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over
the part-of-speech tags as output at each time step.

Sequence Classifiers

12 CHAPTER 9 • SEQUENCE PROCESSING WITH RECURRENT NETWORKS

This approach is usually implemented by adding a CRF (Lample et al., 2016) layer
as the final layer of recurrent network.

9.2.3 RNNs for Sequence Classification
Another use of RNNs is to classify entire sequences rather than the tokens within
them. We’ve already encountered this task in Chapter 4 with our discussion of sen-
timent analysis. Other examples include document-level topic classification, spam
detection, message routing for customer service applications, and deception detec-
tion. In all of these applications, sequences of text are classified as belonging to one
of a small number of categories.

To apply RNNs in this setting, the text to be classified is passed through the RNN
a word at a time generating a new hidden layer at each time step. The hidden layer
for the final element of the text, hn, is taken to constitute a compressed representation
of the entire sequence. In the simplest approach to classification, hn, serves as the
input to a subsequent feedforward network that chooses a class via a softmax over
the possible classes. Fig. 9.9 illustrates this approach.

x1 x2 x3 xn

RNN

hn

Softmax

Figure 9.9 Sequence classification using a simple RNN combined with a feedforward net-
work. The final hidden state from the RNN is used as the input to a feedforward network that
performs the classification.

Note that in this approach there are no intermediate outputs for the words in
the sequence preceding the last element. Therefore, there are no loss terms associ-
ated with those elements. Instead, the loss function used to train the weights in the
network is based entirely on the final text classification task. Specifically, the out-
put from the softmax output from the feedforward classifier together with a cross-
entropy loss drives the training. The error signal from the classification is backprop-
agated all the way through the weights in the feedforward classifier through, to its
input, and then through to the three sets of weights in the RNN as described earlier
in Section 9.1.2. This combination of a simple recurrent network with a feedforward
classifier is our first example of a deep neural network. And the training regimen
that uses the loss from a downstream application to adjust the weights all the way
through the network is referred to as end-to-end training.end-to-end

training

Stacked RNNs

9.3 • DEEP NETWORKS: STACKED AND BIDIRECTIONAL RNNS 13

9.3 Deep Networks: Stacked and Bidirectional RNNs

As suggested by the sequence classification architecture shown in Fig. 9.9, recurrent
networks are quite flexible. By combining the feedforward nature of unrolled com-
putational graphs with vectors as common inputs and outputs, complex networks
can be treated as modules that can be combined in creative ways. This section intro-
duces two of the more common network architectures used in language processing
with RNNs.

9.3.1 Stacked RNNs
In our examples thus far, the inputs to our RNNs have consisted of sequences of
word or character embeddings (vectors) and the outputs have been vectors useful for
predicting words, tags or sequence labels. However, nothing prevents us from using
the entire sequence of outputs from one RNN as an input sequence to another one.
Stacked RNNs consist of multiple networks where the output of one layer serves asStacked RNNs
the input to a subsequent layer, as shown in Fig. 9.10.

y1 y2 y3
yn

x1 x2 x3 xn

RNN 1

RNN 3

RNN 2

Figure 9.10 Stacked recurrent networks. The output of a lower level serves as the input to
higher levels with the output of the last network serving as the final output.

It has been demonstrated across numerous tasks that stacked RNNs can outper-
form single-layer networks. One reason for this success has to do with the network’s
ability to induce representations at differing levels of abstraction across layers. Just
as the early stages of the human visual system detect edges that are then used for
finding larger regions and shapes, the initial layers of stacked networks can induce
representations that serve as useful abstractions for further layers — representations
that might prove difficult to induce in a single RNN.

The optimal number of stacked RNNs is specific to each application and to each
training set. However, as the number of stacks is increased the training costs rise
quickly.

Bidirectional RNNs9.4 • MANAGING CONTEXT IN RNNS: LSTMS AND GRUS 15

y1

x1 x2 x3 xn

RNN 1 (Left to Right)

RNN 2 (Right to Left)

+

y2

+

y3

+

yn

+

Figure 9.11 A bidirectional RNN. Separate models are trained in the forward and backward
directions with the output of each model at each time point concatenated to represent the state
of affairs at that point in time. The box wrapped around the forward and backward network
emphasizes the modular nature of this architecture.

x1 x2 x3 xn

RNN 1 (Left to Right)

RNN 2 (Right to Left)

+

hn_forw

h1_back

Softmax

Figure 9.12 A bidirectional RNN for sequence classification. The final hidden units from
the forward and backward passes are combined to represent the entire sequence. This com-
bined representation serves as input to the subsequent classifier.

access to the entire preceding sequence, the information encoded in hidden states
tends to be fairly local, more relevant to the most recent parts of the input sequence
and recent decisions. It is often the case, however, that distant information is critical
to many language applications. To see this, consider the following example in the
context of language modeling.

(9.15) The flights the airline was cancelling were full.

Bidirectional RNNs for
sequence classification

9.4 • MANAGING CONTEXT IN RNNS: LSTMS AND GRUS 15

y1

x1 x2 x3 xn

RNN 1 (Left to Right)

RNN 2 (Right to Left)

+

y2

+

y3

+

yn

+

Figure 9.11 A bidirectional RNN. Separate models are trained in the forward and backward
directions with the output of each model at each time point concatenated to represent the state
of affairs at that point in time. The box wrapped around the forward and backward network
emphasizes the modular nature of this architecture.

x1 x2 x3 xn

RNN 1 (Left to Right)

RNN 2 (Right to Left)

+

hn_forw

h1_back

Softmax

Figure 9.12 A bidirectional RNN for sequence classification. The final hidden units from
the forward and backward passes are combined to represent the entire sequence. This com-
bined representation serves as input to the subsequent classifier.

access to the entire preceding sequence, the information encoded in hidden states
tends to be fairly local, more relevant to the most recent parts of the input sequence
and recent decisions. It is often the case, however, that distant information is critical
to many language applications. To see this, consider the following example in the
context of language modeling.

(9.15) The flights the airline was cancelling were full.

Current state of the art neural
LMs
ELMo
GPT
BERT
GPT-2

https://allennlp.org/elmo
https://blog.openai.com/language-unsupervised/
https://arxiv.org/pdf/1810.04805.pdf
https://blog.openai.com/better-language-models/

Summary
RNNs allow us to process sequences one element at a time.

RNNs can have one output per input. The output at a point in time is
based on the current input and the hidden layer from the previous step.

RNNs can be trained similarly to feed forward NNs are using
backpropagation through time.

Applications: LMs, generation, sequence labeling like POS tagging,
sequence classification.

Next time: POS tagging!

