Neural Networks
part 2

JURAFSKY AND MARTIN CHAPTERS 7 AND 9

Reminders

®© © 0

HOMEWORK5 IS DUE HW6 (NN-LM) HAS QUIZZES DON’T HAVE
TONIGHT BY 11:50PM BEEN RELEASED LATE DAYS

Neural Network
LMs part 2

READ CHAPTERS 7 AND 9 IN
JURAFSKY AND MARTIN .
- Neural Network Methods

READ CHAPTER 4 AND 14 for Natural Language Processing
FROM YOAV GOLDBERG’S = 5 S S
BOOK NEURAL NETWORKS
METHODS FOR NLP

Ry L

SYNTHESIS LECTURES ON
Human LANGUAGE TECHNOLOGIES

Graeme Hirst, Series Editor

Recap: Neural Networks

The building block of a neural network is a single computational unit. A
unit takes a set of real valued numbers as input, performs some
computation.

y

la

Recap: Feed-Forward NN

The simplest kind of NN is the Feed-Forward Neural Network
Multilayer network, all units are usually fully-connected, and no cycles.

The outputs from each layer are passed to units in the next higher layer,
and no outputs are passed back to lower layers.

Layer 2 (output layer)

Layer 1 (hidden layer)

Layer O (input layer)

Recap: Language Modeling

Goal: Learn a function that returns the joint probability
Primary difficulty:
1. There are too many parameters to accurately estimate.

2. In n-gram-based models we fail to generalize to related
words / word sequences that we have observed.

Recap: Curse of dimensionality
AKA sparse statistics

Suppose we want a joint distribution over 10 words.
Suppose we have a vocabulary of size 100,000.

100,000%° =10°% parameters

This is too high to estimate from data.

Recap: Chain rule

In LMs we use the chain rule to get the conditional
probability of the next word in the sequence given all of the
previous words:

_ T
P(wiwows.. W) = |lg=1 P(We| Wy We_q)

What assumption do we make in n-gram LMs to simplify
this?

The probability of the next word only depends on the
previous n-1 words.

A small n makes it easier for us to get an estimate of the
probability from data.

Recap: N-gram LMs

Estimate the probability of the next word in a sequence, given the
entire prior context P(w,|w;1). We use the Markov assumption
approximate the probability based on the n-1 previous words.

P(Wt|W1t_1) ~ P(thwf__,%,ﬂ)

For a 4-gram model, we use MLE estimate the probability a large
corpus.

p _ count(We—z We—aWe—1 We)
(Wl W3, We-2, Wi-1) count(We_z We_oWe_1)

Probability tables

We construct tables to look up the probability of seeing a
word given a history.

dimensionality
azure
knowledge

oak

The tables only store observed sequences.

What happens when we have a new (unseen) combination
of n words?

Unseen sequences

What happens when we have a new (unseen) combination
of n words?

1. Back-off
2. Smoothing / interpolation

We are basically just stitching together short sequences of
observed words.

Alternate idea

Let’s try generalizing.

Intuition: Take a sentence like

The.is-in the{bedroom]

And use it when we assign probabilities to similar sentences

like
The-is-around the

Similarity of words / contexts

Use word embeddings!

sim (

Vector for cat Vector for dog

How can we use embeddings to estimate language model probabilities?

p(cat | please] feed| .)
\~

Concatenate these 3 vectors together, use that as input
vector to a feed forward neural network

Compute the probability of all words in the vocabulary
with a softmax on the output layer

Neural network with
embeddings as input

Outp

H

Projection layer 1x3d

- oo?oo..] [\“o{.oo.\‘] [.. oo.oo..]

concatenated embeddings
for context words

Pw=Volwe 3w o w,y)

embedding for embedding for embedding for
word 35 word 9925 word 45180 word 42
A A~ A
2 .| hole] in the ground there lived
\Wt—y Wt-2 Wi-1 Wi

A Neural Probabilistic LM

In NIPS 2003, Yoshua Begio and his colleagues introduced a neural
probabilistic language model

1. They used a vector space model where the words are vectors
with real values R™. m=30, 60, 100. This gave a way to
compute word similarity.

2. They defined a function that returns a joint probability of
words in a sequence based on a sequence of these vectors.

3. Their model simultaneously learned the word representations
and the probability function from data.

Seeing one of the cat/dog sentences allows them to increase the
probability for that sentence and its combinatorial # of
‘neighbor” sentences in vector space.

A Neural Probabilistic LM

Given:
A training set w; ... w, where w, €V

Learn:
flwy ... wy) = P(w,|wy ... wyq)

Subject to giving a high probability to an unseen text/dev set
(e.g. minimizing the perplexity)

Constraint:

Create a proper probability distribution (e.g. sums to 1) so that
we can take the product of conditional probabilities to get the
joint probability of a sentence

Neural net that learns
embeddings

Output layer 1X|V]
P(w|context)
Vixd, U
Hidden layer 1xdy | (0 h, hyy ... Thy
dhX3d W
Pw =V ,
Projection layer 1x3d @5 --0 --00 Vg2l 3%e2 wy)
v E K :::::::::Efffffff E is shared
W /s v 1/ obds ' |’\'/'| ''''''''''' across words
InPUt layer 1X|V| [l()oo.oooo O] [’ OooO‘oo Ob]
one-hot vectors 00-- 1'\ 00 00 0/‘\ 00
index index
word 35 word 9925 word 45180
AL_\ ﬂ/_\ word 42

3..[hole| in ground there lived

the

One-hot vectors

To learn the embeddings, we added an extra layer to the network.
Instead of pre-trained embeddings as the input layer, we instead use
one-hot vectors.

(0000100 ... 000 0]
1234567

These are then used to look up a row vector in the embedding matrix E,
which is of size d by | V|.

With this small change, we now can
learn the emebddings of words.

1X|V| [Ooo.ooooO]
00...1\... 00

Forward pass

1. Select embeddings from E for the
three context words (the ground there)
and concatenate them together

2. Multiply by W and add b (not
shown), and pass it through an
activation function (sigmoid, RelLU, etc)t
to get the hidden layer h.

3. Multiply by U (the weight matrix for
the hidden layer) to get the output
layer, which is of size 1 by |V].

4. Apply softmax to get the probability.
Each node i in the output layer
estimates the probability P(w, =

i We_1,Wi_p,W,_3)

w B)
P(w|c0ntext) AN
Hidden layer 1xdy h;
dyx3d W
s T . POV yolwe 3 we2wp.3)

Projection layer 1x3d

dxivi E || / XX T A -
In]})lu:layer IX}V] r0:,:,}5“:?:,00V| 10?0% 5 V\ 100
word 35 word 9925 i
3.[hole]in | the | ground | there lived [.5
Y3 2 Wil Wy
e = (Exq,Exy, ..., Ex)
h= oc(We+b)
z=Uh

y = softmax(z)

Training with backpropagation

To train the models we need to find good settings
for all of the parameters 6 = E,W,U,b.

How do we do it? Gradient descent using error
backpropagation on the computation graph to
compute the gradient.

% MORGAN §&CLAYPOOL PUBLISHERS

Since the final prediction depends on many
intermediate layers, and since each layer has its own

SEN
weights, we need to know how much to update Neural Network Methods
each layer. / for Natural Language Processmg

Error backpropagation allows us to assign
proportional blame (compute the error term)
back to the previous hidden layers.

For information about backpropogation, |
check out Chapter 5 of this book 2

Training data

The training examples are simply word k-grams from the corpus

The identities of the first k-1 words are used as features, and the last
word is used as the target label for the classification.

Conceptually, the model is trained using cross-entropy loss.

Training the Neural LM

Use a large text to train. Start with random weights Iteratively moving
through the text predicting each word w;, .

At each word w;,, the cross-entropy (negative log likelihood) loss is:
L =—logp(w; w1, ., We_nt1)
The gradient for the loss is:

0 —log p(W¢ [We—1,...Wt—n+1)
00

Ore1 =60t — 1

The gradient can be computed in any standard neural network
framework which will then backpropagate through U, W, b, E.

The model learns both a function to predict the probability of the next
word, and it learns word embeddings too!

Learned embeddings

When the ~50 dimensional vectors that result from training
a neural LM are projected down to 2-dimensions, we see a
lot of words that are intuitively similar are close togither.

£m media
ailly e Eefevisigpaaaomic
. enteriadvneting
groving 3leadng
developing news ddd
1
talk
13
suppoxting e i
: i e
containing ~ prodatHny opening
g cxRAEING . scoxiRgaVing
giving 1¢HWg"Y
= g : aching
performing 1eafAREiad host
- ived
d9deHing passing Proadcast
o iming)
t dxiving yun hit plaaming

Advantages of NN LMs

Better results. They achieve better perplexity scores than SOTA n-gram
LMs.

Larger N. NN LMs can scale to much larger orders of n. This is
achievable because parameters are associated only with individual

words, and not with n-grams.

They generalize across contexts. For example, by observing that the
words blue, green, red, black, etc. appear in similar contexts, the model
will be able to assign a reasonable score to the green car even though it
never observed in training, because it did observe blue car and red car.

A by-product of training are word embeddings!

Disadvantage of Feedforward
Neural Networks

Bengio (2003) used a Feedfoward neural network for their language
model. This means is that it operates only on fixed size inputs.

For sequences longer than that size, it slides a window over the input,
and makes predictions as it goes.

The decision for one window has no impact on the later decisions.

This shares the weakness of Markov approaches, because it limits the
context to the window size.

To fix this, we’re going to look at recurrent neural networks.

Current state of the art neural
LMs

ELMo
GPT
BERT
GPT-2

https://allennlp.org/elmo
https://blog.openai.com/language-unsupervised/
https://arxiv.org/pdf/1810.04805.pdf
https://blog.openai.com/better-language-models/

Recurrent Neural Networks

Language is an inherently temporal phenomenon.

Logistic regression and Feedforward NNs are not temporal in nature.
They use fixed size vectors that have simultaneous access to the full
input all at once.

Work-arounds like a sliding window aren’t great, because
1. The decision made for one window has no impact on later decisions
2. It limits the context being used

3. Fails to capture important aspects of language like consistency and
long distance dependencies

Recurrent Neural Networks

A recurrent neural network (RNN) is any network that contains a cycle
within its network.

In such networks the value of a unit can be dependent on earlier
outputs as an input.

RNNs have proven extremely effective when applied to NLP.

Memory

We use a hidden layer from a preceding point in time to augment the
input layer.

This hidden layer from the preceding point in time provides a form of
memory or context.

This architecture does not impose a fixed-length limit on its prior
context.

As a result, information can come from all the way back at the

beginning of the input sequence. Thus we get away from the Markov
assumption.

RNN as a feedforward network

Forward inference

function FORWARDRNN(x, network) returns output sequence y

ho<+0

for i< 1 to LENGTH(x) do
hi<—g(U hi—1 + W x;)
yis—f(V hy)

return y

This allows us to have an output sequence equal in length to the input
sequence.

Unrolled RNN

o
=7\
G P G—

time

Training RNNSs

Just like with feedforward networks, we’ll use a training set, a loss
function, and back-propagation to get the gradients needed to adjust
the weights in an RNN.

The weights we need to update are:

W — the weights from the input layer to the hidden layer

U — the weights from the previous hidden layer to the current hidden
layer

V — the weights from the hidden layer to the output layer

Training RNNSs

New considerations:

1. to compute the loss function for the output at time t we need the
hidden layer from time t - 1.

2. The hidden layer at time t influences both the output at time t and
the hidden layer at time t + 1 (and hence the output and loss at t+1)

To assess the error accruing to h, , we’ll need to know its influence on
both the current output as well as the ones that follow.

Backpropagation of errors

C '3)

e N G —
N
e P G —

time

Vanishing/Exploding Gradients

In deep networks, it is common for the error gradients to either vanish
or explode as they backpropagate. The problem is more severe in
deeper networks, especially in RNNs.

Dealing with vanishing gradients is still an open research question.
Solutions include:

1. making the networks shallower

2. step-wise training where first layers are trained and then fixed
3. performing batch-normalization
4,

using specialized NN architectures like LSTM and GRU

Recurrent Neural Language
Models

Unlike n-gram LMs and feedforward networks with sliding windows,
RNN LMs don’t use a fixed size context window.

They predict the next word in a sequence by using the current word and
the previous hidden state as input.

The hidden state embodies information about all of the preceding
words all the way back to the beginning of the sequence.

Thus they can potentially take more context into account than n-gram
LMs and NN LMs that use a sliding window.

Autoregressive generation
with an RNN LM

d 7z | /
Sampled Word : (a/): (_hole)
|

|
|
|
|
|
|
|
|
|
l
|
|
|
|
A : A
|
|
|
|
|
|
|
|
|
l-—/

RNN
A A
Embedding (Inm
|
' |
|
Input Word < <s>)1 (_In): Ca) (hole)
l ~ | ~ s
l\// ‘o g

Tag Sequences

()

Sequence Classifiers

Stacked RNNs

RNN 3

RNN 2

RNN 1

Bidirectional RNNs

RNN 2 (Right to Left) <

A

RNN 1 (Left to Right) |

Bidirectional RNNSs for
sequence classification

N
—

.

AV@V\

(M back) RNN 2 (Right to Left) < \
A A \ A
RNN 1 (Left to Right) | S (ﬁ_ "
A
C 1 C(D X3 C_ X

Current state of the art neural
LMs

ELMo
GPT
BERT
GPT-2

https://allennlp.org/elmo
https://blog.openai.com/language-unsupervised/
https://arxiv.org/pdf/1810.04805.pdf
https://blog.openai.com/better-language-models/

Summary

RNNs allow us to process sequences one element at a time.

RNNs can have one output per input. The output at a point in time is
based on the current input and the hidden layer from the previous step.

RNNs can be trained similarly to feed forward NNs are using
backpropagation through time.

Applications: LMs, generation, sequence labeling like POS tagging,
sequence classification.

Next time: POS tagging!

