
Schoolhouse Rock

Reminders

QUIZ 5 IS DUE TONIGHT BY
11:59PM (NO LATE DAYS)

HW6 IS DUE ON WEDNEDAY

Part of Speech
Tagging
JURAFSKY AND MARTIN CHAPTER 8

Ancient Greek tag set
(c. 100 BC)

Noun

Verb

Pronoun

Preposition

Adverb

Conjunction

Participle

Article

Schoolhouse Rock tag set
(c. 1970)

Noun

Verb

Pronoun

Preposition

Adverb

Conjunction

Participle

Article

Adjective

Interjection

Word classes
Every word in the vocabulary belongs to one or more of
these word classes.

Assigning the classes to words in a sentence is called part of
speech (POS) tagging.

Many words can have multiple POS tags.
Can you think of some?

Open classes
Four major classes:

1. Noun

2. Verbs

3. Adjectives

4. Adverbs

English has all four but not every language does.

Nouns
Person, place or thing.

Proper nouns: names of specific
entities or people.

Common nouns
◦ Count nouns - allow grammatical

enumeration, occurring in both
singular and plural.

◦ Mass nouns - conceptualized as
homogenous groups. Cannot be
pluralized. Can appear without
determiners even in singular form.

Verbs
Words describing actions and processes.

English verbs have inflectional markers.

3rd person singular

Non-3rd person
singular

Progressive (ing)

Past

Verbs
Words describing actions and processes.

English verbs have inflectional markers.

Root: compute suffix

3rd person singular He/she/it computes +s

Non-3rd person
singular

They/you/I compute __

Progressive (ing) Computing +ing

Past Computed +ed

Adjectives
Word that describe properties or qualities.

Adverb
Modify verbs or whole verb phrases or other words like
adjectives

Examples

Locatives here, home, uphill

Degree Very, extremely, extraordinarily,
somewhat, not really, --ish

Manner slowly, quickly, softly, gently, alluringly

Temporal yesterday, Monday, last semester

Closed Classes

numerals one, two, nth, first, second, …

prepositions of, on, over, under, to, from, around

determiners indefinite: some, a, an
definite: the, this, that, the

pronouns she, he, it, they, them, who, whoever,
whatever

conjunctions and, or, but

particles (preposition joined to a verb) knocked over

auxiliary verbs was

Tag Description Example Tag Description Example
CC coordinating

conjunction
and, but, or SYM symbol +, %, &

CD cardinal number one, two TO “to” to

DT determiner a, the UH interjection ah, oops

EX existential “there” there VB verb base form eat

FW foreign word mea culpa VBD verb past tense ate

IN proposition/sub-conj of, in, by VBG verb gerund eating

JJ adjective yellow VBN verb past participle eaten

JJR comparative
adjective

bigger VBP verb non-3sg pres eat

JJS superlative adjective wildest VBZ verb 3sg pres eats

LS list item marker 1, 2, One WDT wh-determiner which, that

MD modal can, should WP wh-pronoun what, who

NN noun, singular or
mass

llama WP$ possessive wh- whose

NNS noun, plural llamas WRB wh-adverb how, where

NNP proper noun, sing. IBM $ dollar sign $

NNPS proper noun, plural Carolinas # pound sign #

PDT predeterminer all, both “ left quote ‘ or “

POS possessive ending ‘s ” right quote ’ or ”

PRP personal pronoun I, you, we (left parenthesis [, (, {, <

PRP$ possessive pronoun your, one’s) right parenthesis],), }, >

POS Tagging
Words are ambiguous, so tagging must resolve disambiguate.

The amount of tag ambiguity for word types in the Brown and WSJ corpora from
the Treebank-3 (45-tag) tagging. These statistics include punctuation as words,
and assume words are kept in their original case.

Types: WSJ Brown

Unambiguous (1 tag) 44,432 (86%) 45,799 (85%)

Ambiguous (2+ tags) 7,025 (14%) 8,050 (15%)

Tokens:

Unambiguous (1 tag) 577,421 (45%) 384,349 (33%)

Ambiguous (2+ tags) 711,780 (55%) 786,646 (67%)

Some words have up to 6 tags
Sentence Tag

1 Earnings took a back seat

2 A small yard in the back

3 Senators back the bill

4 He started to back towards
the door

5 To buy back stock.

6 I was young back then.

Corpora with manual POS tags
Brown corpus – 1 million words of 500 written English texts
from different genres.

WSJ corpus – 1 million words from the Wall Street Journal

Switchboard corpus – 2 million words of telephone
conversations

The/DT grand/JJ jury/NN commented/VBD on/IN a/DT
number/NN of/IN other/JJ topics/NNS ./.

There/EX are/VBP 70/CD children/NNS there/RB

Most frequent class baseline
Many words are easy to disambiguate, because their
different tags aren’t equally likely.

Simplistic baseline for POS tagging: given an ambiguous
word, choose the tag which is most frequent in the
training corpus.

Most Frequent Class Baseline: Always compare a
classifier against a baseline at least as good as the most
frequent class baseline (assigning each token to the
class it occurred in most often in the training set).

How good is the baseline?
This lets us know how hard the task is (and how much
room for improvement real models have).

Accuracy for POS taggers is measured as the percent
of tags that are correctly labeled when compared to
human labels on a test set.

Most Frequent Class Baseline: 92%
State of the art in POS tagging: 97%

(Much harder for other languages and other genres)

Hidden Markov Models
(HMMs)
The HMM is a probabilistic sequence model.

A sequence model assigns a label to each unit in a sequence, mapping a
sequence of observations to a sequence of labels.

Given a sequence of words, an HMM computes a probability
distribution over a sequence of POS tags.

Sequence Models

A Hidden Markov Model (HMM) is a probabilistic
sequence model: given a sequence of words, it
computes a probability distribution over possible
sequences of labels and chooses the best label
sequence.

A sequence model or sequence classifier is a model
whose job is to assign a label or class to each unit in a
sequence, thus mapping a sequence of observations to
a sequence of labels.

What is hidden?
We used a Markov model in n-gram LMs. This kind of
model is sometimes called a Markov chain. It is useful
when we need to compute a probability for a sequence
of observable events.

In many cases the events we are interested in are not
observed directly. We don’t see part-of-speech tags in
a text. We just see words, and need to infer the tags
from the word sequence.

We call the tags hidden because they are not
observed.

HMMs for tagging
Basic equation for HMM tagging

𝑡̂!" = argmax#!" 𝑃(𝑡!
"|𝑤!")

Use Bayes rule

= argmax#!"
$ 𝑤!" 𝑡!" $(#!")

$('!")

= argmax#!" 𝑃 𝑤!" 𝑡!" 𝑃(𝑡!")

Find the best (hidden) tag sequence 𝒕𝟏𝑵, given an (observed) word sequence 𝒘𝟏
𝑵

where N = number of words in the sequence

Simplifying Assumptions
1. Output Independence: Probability of a word only

depends on its own tag, and it is independent of
neighboring word and tags

2. Markov assumption: The probability of a tag depends
only on previous tag, not the whole tag sequence.

𝑃 𝑤#$ 𝑡#$ ≈.
%&#

$

𝑃 (𝑤%|𝑡%)

𝑃(𝑡#$) ≈.
%&#

$

𝑃 (𝑡%|𝑡%'#)

Simplifying Assumptions
1. Output Independence: Probability of a word only

depends on its own tag, and it is independent of
neighboring word and tags

2. Markov assumption: The probability of a tag depends
only on previous tag, not the whole tag sequence.

𝑃 𝑤#$ 𝑡#$ ≈.
%&#

$

𝑃 (𝑤%|𝑡%)

𝑃(𝑡#$) ≈.
%&#

$

𝑃 (𝑡%|𝑡%'#)

0𝒕𝟏𝑵 = 𝐚𝐫𝐠𝐦𝐚𝐱𝒕𝟏𝑵 𝑷(𝒕𝟏
𝑵|𝒘𝟏

𝑵) ≈ 𝐚𝐫𝐠 𝐦𝐚𝐱𝒕𝟏𝑵 .
𝒊&𝟏

𝑵

𝑷 𝒘𝒊 𝒕𝒊 𝑷 (𝒕𝒊|𝒕𝒊'𝟏)Combining:

Transition probability

Emission probability

HMM Tagger Components
𝑃 𝑡! 𝑡!"# = $%&'(((!"#,(!)

$%&'(((!"#)
Transition probability

In the WSJ corpus, a modal verb (MD) occurs 13,124 times.
10,471 times the MD is followed by a verb (VB). Therefore,

Transition probabilities are sometimes called the A probabilities.

𝑃 𝑉𝐵 𝑀𝐷 =
10,471
13,124

= .80

HMM Tagger Components
𝑃 𝑤! 𝑡! = $%&'((,!,(!)

$%&'(((!)

Of the 13,124 occurrences of modal verbs (MD) in the WSJ corpus,
the word will represents 4,046 of the words tagged as MD.

Emission probabilities are sometimes called the B probabilities.

𝑃 𝑤𝑖𝑙𝑙 𝑀𝐷 =
4,046

13,124
= .31

Emission probability

10 CHAPTER 8 • PART-OF-SPEECH TAGGING

NN3VB1

MD2

a22

a11

a12

a21

a13

a33

a32

a23

a31

P("aardvark" | NN)
...
P(“will” | NN)
...
P("the" | NN)
...
P(“back” | NN)
...
P("zebra" | NN)

B3

P("aardvark" | VB)
...
P(“will” | VB)
...
P("the" | VB)
...
P(“back” | VB)
...
P("zebra" | VB)

B1

P("aardvark" | MD)
...
P(“will” | MD)
...
P("the" | MD)
...
P(“back” | MD)
...
P("zebra" | MD)

B2

Figure 8.4 An illustration of the two parts of an HMM representation: the A transition
probabilities used to compute the prior probability, and the B observation likelihoods that are
associated with each state, one likelihood for each possible observation word.

8.4.4 HMM tagging as decoding
For any model, such as an HMM, that contains hidden variables, the task of deter-
mining the hidden variables sequence corresponding to the sequence of observations
is called decoding. More formally,decoding

Decoding: Given as input an HMM l = (A,B) and a sequence of ob-
servations O = o1,o2, ...,oT , find the most probable sequence of states
Q = q1q2q3 . . .qT .

For part of speech tagging, the goal of HMM decoding is to choose the tag
sequence tn

1 that is most probable given the observation sequence of n words words
wn

1:
t̂n
1 = argmax

tn
1

P(tn
1 |wn

1) (8.13)

The way we’ll do this in the HMM is to use Bayes’ rule to instead compute:

t̂n
1 = argmax

tn
1

P(wn
1|tn

1)P(t
n
1)

P(wn
1)

(8.14)

Furthermore, we simplify Eq. 8.14 by dropping the denominator P(wn
1):

t̂n
1 = argmax

tn
1

P(wn
1|tn

1)P(t
n
1) (8.15)

HMM taggers make two further simplifying assumptions. The first is that the
probability of a word appearing depends only on its own tag and is independent of
neighboring words and tags:

P(wn
1|tn

1) ⇡
nY

i=1

P(wi|ti) (8.16)

The second assumption, the bigram assumption, is that the probability of a tag
is dependent only on the previous tag, rather than the entire tag sequence;

P(tn
1) ⇡

nY

i=1

P(ti|ti�1) (8.17)

Emission probability
Transition probability

HMM decoding
For a model with hidden variables, the task of
determining the hidden variables sequence
corresponding to the sequence of observations is
called “decoding”.

Decoding: Given an HMM λ = (A, B) and a
sequence of observations O = w1, w2 , ..., wT , find
the most probable sequence of states
Q = t1t2t3 ...tT .

𝑡̂!" = 𝐚𝐫𝐠𝐦𝐚𝐱#!" 𝑃 𝑤!" 𝑡!" 𝑃(𝑡!")

HMM decoding

Let us learn about HMMs
VB PRP VB IN NNP

Input:

Output Best
Labels:

Let us learn about HMMs

VB PRP VB IN NNP

IN VB VB NN DT

PRP . NN IN WP
…

p=0.45

p=0.03

p=0.00006

Compute probability for all possible sequence of labels:

How many label sequences?

Let us learn about HMMsInput:

CC
CD
DT
EX
FW
IN
JJ
JJR
JJS
LS
MD
NN
NNS
NNP
NNPS
PDT
POS

CC
CD
DT
EX
FW
IN
JJ
JJR
JJS
LS
MD
NN
NNS
NNP
NNPS
PDT
POS

CC
CD
DT
EX
FW
IN
JJ
JJR
JJS
LS
MD
NN
NNS
NNP
NNPS
PDT
POS

CC
CD
DT
EX
FW
IN
JJ
JJR
JJS
LS
MD
NN
NNS
NNP
NNPS
PDT
POS

CC
CD
DT
EX
FW
IN
JJ
JJR
JJS
LS
MD
NN
NNS
NNP
NNPS
PDT
POS

N states

T observations

N states

T observations

How many label sequences?

Let us learn about HMMsInput:

CC
CD
DT
EX
FW
IN
JJ
JJR
JJS
LS
MD
NN
NNS
NNP
NNPS
PDT
POS

CC
CD
DT
EX
FW
IN
JJ
JJR
JJS
LS
MD
NN
NNS
NNP
NNPS
PDT
POS

CC
CD
DT
EX
FW
IN
JJ
JJR
JJS
LS
MD
NN
NNS
NNP
NNPS
PDT
POS

CC
CD
DT
EX
FW
IN
JJ
JJR
JJS
LS
MD
NN
NNS
NNP
NNPS
PDT
POS

CC
CD
DT
EX
FW
IN
JJ
JJR
JJS
LS
MD
NN
NNS
NNP
NNPS
PDT
POS

For POS tagging a sentence of length T = 5, and number
of states (tags) = 45
𝑁- = 60,466,176

Dynamic Programming
Coined by Richard Bellman in 1940s

“My boss, Secretary of Defense, actually had a pathological fear and hatred of the word
‘research’. Dynamic has a very interesting property as an adjective, and that it's
impossible to use the word dynamic in a pejorative sense. Try thinking of some
combination that will possibly give it a pejorative meaning. It's impossible!”

Method for solving complex problems by breaking them
down into simpler sub-problems and storing their
solutions

Technique of storing solutions to sub-problems instead of
recomputing them is called “memoization”

33

Dynamic Programming
Fibonacci Series

fib(n) = fib(n − 1) + fib(n − 2)

§fib(5)

Øfib(4) + fib(3)

Ø(fib(3) + fib(2)) + (fib(2) + fib(1))

Ø((fib(2) + fib(1)) + (fib(1) + fib(0))) + ((fib(1) + fib(0)) + fib(1))

Ø(((fib(1) + fib(0)) + fib(1)) + (fib(1) + fib(0))) + ((fib(1) + fib(0)) + fib(1))

Instead of calling fib(3) multiple times, we should store it and lookup instead
of recomputing

34

Viterbi Algorithm

8.4 • HMM PART-OF-SPEECH TAGGING 11

Plugging the simplifying assumptions from Eq. 8.16 and Eq. 8.17 into Eq. 8.15
results in the following equation for the most probable tag sequence from a bigram
tagger:

t̂n
1 = argmax

tn
1

P(tn
1 |wn

1)⇡ argmax
tn
1

nY

i=1

emissionz }| {
P(wi|ti)

transitionz }| {
P(ti|ti�1) (8.18)

The two parts of Eq. 8.18 correspond neatly to the B emission probability and
A transition probability that we just defined above!

8.4.5 The Viterbi Algorithm
The decoding algorithm for HMMs is the Viterbi algorithm shown in Fig. 8.5. AsViterbi

algorithm
an instance of dynamic programming, Viterbi resembles the dynamic program-
ming minimum edit distance algorithm of Chapter 2.

function VITERBI(observations of len T,state-graph of len N) returns best-path, path-prob

create a path probability matrix viterbi[N,T]
for each state s from 1 to N do ; initialization step

viterbi[s,1] ps ⇤ bs(o1)
backpointer[s,1] 0

for each time step t from 2 to T do ; recursion step
for each state s from 1 to N do

viterbi[s,t] N
max

s0=1
viterbi[s0, t�1] ⇤ as0,s ⇤ bs(ot)

backpointer[s,t] N
argmax

s0=1

viterbi[s0, t�1] ⇤ as0,s ⇤ bs(ot)

bestpathprob N
max

s=1
viterbi[s,T] ; termination step

bestpathpointer N
argmax

s=1
viterbi[s,T] ; termination step

bestpath the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob

Figure 8.5 Viterbi algorithm for finding the optimal sequence of tags. Given an observation sequence and an
HMM l = (A,B), the algorithm returns the state path through the HMM that assigns maximum likelihood to
the observation sequence.

The Viterbi algorithm first sets up a probability matrix or lattice, with one col-
umn for each observation ot and one row for each state in the state graph. Each col-
umn thus has a cell for each state qi in the single combined automaton. Figure 8.6
shows an intuition of this lattice for the sentence Janet will back the bill.

Each cell of the trellis, vt(j), represents the probability that the HMM is in state
j after seeing the first t observations and passing through the most probable state
sequence q1, ...,qt�1, given the HMM l . The value of each cell vt(j) is computed
by recursively taking the most probable path that could lead us to this cell. Formally,
each cell expresses the probability

vt(j) = max
q1,...,qt�1

P(q1...qt�1,o1,o2 . . .ot ,qt = j|l) (8.19)

We represent the most probable path by taking the maximum over all possible
previous state sequences max

q1,...,qt�1
. Like other dynamic programming algorithms,

Viterbi Algorithm

8.4 • HMM PART-OF-SPEECH TAGGING 11

Plugging the simplifying assumptions from Eq. 8.16 and Eq. 8.17 into Eq. 8.15
results in the following equation for the most probable tag sequence from a bigram
tagger:

t̂n
1 = argmax

tn
1

P(tn
1 |wn

1)⇡ argmax
tn
1

nY

i=1

emissionz }| {
P(wi|ti)

transitionz }| {
P(ti|ti�1) (8.18)

The two parts of Eq. 8.18 correspond neatly to the B emission probability and
A transition probability that we just defined above!

8.4.5 The Viterbi Algorithm
The decoding algorithm for HMMs is the Viterbi algorithm shown in Fig. 8.5. AsViterbi

algorithm
an instance of dynamic programming, Viterbi resembles the dynamic program-
ming minimum edit distance algorithm of Chapter 2.

function VITERBI(observations of len T,state-graph of len N) returns best-path, path-prob

create a path probability matrix viterbi[N,T]
for each state s from 1 to N do ; initialization step

viterbi[s,1] ps ⇤ bs(o1)
backpointer[s,1] 0

for each time step t from 2 to T do ; recursion step
for each state s from 1 to N do

viterbi[s,t] N
max

s0=1
viterbi[s0, t�1] ⇤ as0,s ⇤ bs(ot)

backpointer[s,t] N
argmax

s0=1

viterbi[s0, t�1] ⇤ as0,s ⇤ bs(ot)

bestpathprob N
max

s=1
viterbi[s,T] ; termination step

bestpathpointer N
argmax

s=1
viterbi[s,T] ; termination step

bestpath the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob

Figure 8.5 Viterbi algorithm for finding the optimal sequence of tags. Given an observation sequence and an
HMM l = (A,B), the algorithm returns the state path through the HMM that assigns maximum likelihood to
the observation sequence.

The Viterbi algorithm first sets up a probability matrix or lattice, with one col-
umn for each observation ot and one row for each state in the state graph. Each col-
umn thus has a cell for each state qi in the single combined automaton. Figure 8.6
shows an intuition of this lattice for the sentence Janet will back the bill.

Each cell of the trellis, vt(j), represents the probability that the HMM is in state
j after seeing the first t observations and passing through the most probable state
sequence q1, ...,qt�1, given the HMM l . The value of each cell vt(j) is computed
by recursively taking the most probable path that could lead us to this cell. Formally,
each cell expresses the probability

vt(j) = max
q1,...,qt�1

P(q1...qt�1,o1,o2 . . .ot ,qt = j|l) (8.19)

We represent the most probable path by taking the maximum over all possible
previous state sequences max

q1,...,qt�1
. Like other dynamic programming algorithms,

The complexity of the Viterbi algorithm for this HMM is
O(T * N2).
So POS tagging a sentence of length T = 5 with N = 45
states (tags) goes from:
𝑁- = 60,466,176

to computations
T ∗ 𝑁. = 10,125 computations!

Viterbi Lattice12 CHAPTER 8 • PART-OF-SPEECH TAGGING

JJ

NNP NNP NNP

MD MD MD MD

VB VB

JJ JJ JJ

NN NN

RB RBRBRB

DT DT DT DT

NNP

Janet will back the bill

NN

VB

MD

NN

VB

JJ

RB

NNP

DT

NN

VB

Figure 8.6 A sketch of the lattice for Janet will back the bill, showing the possible tags (qi)
for each word and highlighting the path corresponding to the correct tag sequence through the
hidden states. States (parts-of-speech) which have a zero probability of generating a particular
word according to the B matrix (such as the probability that a determiner DT will be realized
as Janet) are greyed out.

Viterbi fills each cell recursively. Given that we had already computed the probabil-
ity of being in every state at time t �1, we compute the Viterbi probability by taking
the most probable of the extensions of the paths that lead to the current cell. For a
given state q j at time t, the value vt(j) is computed as

vt(j) =
N

max
i=1

vt�1(i) ai j b j(ot) (8.20)

The three factors that are multiplied in Eq. 8.20 for extending the previous paths to
compute the Viterbi probability at time t are

vt�1(i) the previous Viterbi path probability from the previous time step
ai j the transition probability from previous state qi to current state q j

b j(ot) the state observation likelihood of the observation symbol ot given
the current state j

8.4.6 Working through an example
Let’s tag the sentence Janet will back the bill; the goal is the correct series of tags
(see also Fig. 8.6):
(8.21) Janet/NNP will/MD back/VB the/DT bill/NN

Let the HMM be defined by the two tables in Fig. 8.7 and Fig. 8.8. Figure 8.7
lists the ai j probabilities for transitioning between the hidden states (part-of-speech
tags). Figure 8.8 expresses the bi(ot) probabilities, the observation likelihoods of
words given tags. This table is (slightly simplified) from counts in the WSJ corpus.
So the word Janet only appears as an NNP, back has 4 possible parts of speech, and
the word the can appear as a determiner or as an NNP (in titles like “Somewhere
Over the Rainbow” all words are tagged as NNP).

Figure 8.9 shows a fleshed-out version of the sketch we saw in Fig. 8.6, the
Viterbi trellis for computing the best hidden state sequence for the observation se-
quence Janet will back the bill.

Trigram HMMs
So far, we had a bigram assumption. The probability of a tag
depends only on previous tag, not the whole tag sequence.

We could extend it to a trigram model

𝑃(𝑡#$) ≈.
%&#

$

𝑝 (𝑡%|𝑡%'#)

𝑃(𝑡#$) ≈.
%&#

$

𝑝 (𝑡%|𝑡%'#, 𝑡%'*)

Trigram HMMs
So far, we had a bigram assumption. The probability of a tag
depends only on previous tag, not the whole tag sequence.

We could extend it to a trigram model

𝑃(𝑡#$) ≈.
%&#

$

𝑝 (𝑡%|𝑡%'#)

𝑃(𝑡#$) ≈.
%&#

$

𝑝 (𝑡%|𝑡%'#, 𝑡%'*)
The complexity of the trigram HMM increases from
O(N2T) to O(N3T). The number of states (N) gets
larger since we have to compare every pair of 45 tags,
instead of just each tag, so we have 453 = 91,125
computations per column.

Beam Search
One common solution to the complexity problem is the
use of beam search decoding. Instead of keeping the
entire column of states at each time point t, beam
search just keeps the best few hypothesis.
At time t this requires computing the Viterbi score
for each of the N cells, sorting the scores, and
keeping only the best-scoring states. The rest are
pruned out and not continued forward to time t+1.

Beam Search

16 CHAPTER 8 • PART-OF-SPEECH TAGGING

function DELETED-INTERPOLATION(corpus) returns l1,l2,l3

l1, l2, l3 0
foreach trigram t1, t2, t3 with C(t1, t2, t3)> 0

depending on the maximum of the following three values
case C(t1,t2,t3)�1

C(t1,t2)�1 : increment l3 by C(t1, t2, t3)

case C(t2,t3)�1
C(t2)�1 : increment l2 by C(t1, t2, t3)

case C(t3)�1
N�1 : increment l1 by C(t1, t2, t3)

end
end
normalize l1,l2,l3
return l1,l2,l3

Figure 8.10 The deleted interpolation algorithm for setting the weights for combining un-
igram, bigram, and trigram tag probabilities. If the denominator is 0 for any case, we define
the result of that case to be 0. N is the number of tokens in the corpus. After Brants (2000).

time point t, we just keep the best few hypothesis at that point. At time t this requires
computing the Viterbi score for each of the N cells, sorting the scores, and keeping
only the best-scoring states. The rest are pruned out and not continued forward to
time t +1.

One way to implement beam search is to keep a fixed number of states instead of
all N current states. Here the beam width b is a fixed number of states. Alternativelybeam width
b can be modeled as a fixed percentage of the N states, or as a probability threshold.
Figure 8.11 shows the search lattice using a beam width of 2 states.

JJ

NNP NNP NNP

MD MD MD MD

VB VB

JJ JJ JJ

NN NN

RB RBRBRB

DT DT DT DT

NNP

Janet will back the bill

NN

VB

MD

NN

VB

JJ

RB

NNP

DT

NN

VB

Figure 8.11 A beam search version of Fig. 8.6, showing a beam width of 2. At each time
t, all (non-zero) states are computed, but then they are sorted and only the best 2 states are
propagated forward and the rest are pruned, shown in orange.

Unknown words
To achieve high accuracy with POS taggers, it is also
important to have a good model for dealing with
unknown words.

Proper names and acronyms are created very often,
and even new common nouns and verbs enter the
language at a surprising rate.

Unknown words
One useful feature for distinguishing parts of speech is
word shape (proper nouns start with a capital).

The strongest feature is morphology.

Words that end in
◦ -s tend to be plural nouns (NNS)
◦ -ed tend to be past participles (VBN)
◦ -able tend to be adjectives (JJ)
◦ and so on

Learning suffix model
Store the final letter sequence (suffixes) for up to 10
letters.

For each such sequence, record the probability of the
tag that it was associated with during training.

Use back-off to smooth these probabilities for.
Successively shorter sequences.

Trigram HMM with unknown word handling: 96.7%
State-of-the-art neural network POS tagging: 97%

Maximum Entropy Markov
Models
Could we add features like word shape and suffixes
directly into the model in a clean way? We had this for
classification with logistic regression. But it’s not a
sequence model, since it assigns a class to a single
observation.

We can turn it into a discriminative sequence model
by running it on successive words, using the class
assigned to the prior word as a feature in the
classification of the next word. This is called a
Maximum Entropy Markov Model (MEMM).

MEMMs v HMMs
HMM:

MEMM:

!𝑇 = 𝑎𝑟𝑔𝑚𝑎𝑥 ! 𝑃 𝑇 𝑊

= 𝑎𝑟𝑔𝑚𝑎𝑥 ! 𝑃 𝑊 𝑇 𝑃 𝑇

= 𝑎𝑟𝑔𝑚𝑎𝑥 !+
"

𝑃 (𝑤𝑜𝑟𝑑"|𝑡𝑎𝑔")+
"

𝑃 (𝑡𝑎𝑔"|𝑡𝑎𝑔" #$)

!𝑇 = 𝑎𝑟𝑔𝑚𝑎𝑥 ! 𝑃 𝑇 𝑊

= 𝑎𝑟𝑔𝑚𝑎𝑥 !+
"

𝑃 (𝑡𝑎𝑔"|𝑤𝑜𝑟𝑑", 𝑡𝑎𝑔" #$)

MEMMs v HMMs

18 CHAPTER 8 • PART-OF-SPEECH TAGGING

as a feature in the classification of the next word. When we apply logistic regression
in this way, it’s called the maximum entropy Markov model or MEMM5MEMM

Let the sequence of words be W = wn
1 and the sequence of tags T = tn

1 . In an
HMM to compute the best tag sequence that maximizes P(T |W) we rely on Bayes’
rule and the likelihood P(W |T):

T̂ = argmax
T

P(T |W)

= argmax
T

P(W |T)P(T)

= argmax
T

Y

i

P(wordi|tagi)
Y

i

P(tagi|tagi�1) (8.31)

In an MEMM, by contrast, we compute the posterior P(T |W) directly, training it to
discriminate among the possible tag sequences:

T̂ = argmax
T

P(T |W)

= argmax
T

Y

i

P(ti|wi, ti�1) (8.32)

Consider tagging just one word. A multinomial logistic regression classifier could
compute the single probability P(ti|wi, ti�1) in a different way that an HMM. Fig. 8.12
shows the intuition of the difference via the direction of the arrows; HMMs compute
likelihood (observation word conditioned on tags) but MEMMs compute posterior
(tags conditioned on observation words).

will

MD VB DT NN

Janet back the bill

NNP

will

MD VB DT NN

Janet back the bill

NNP

Figure 8.12 A schematic view of the HMM (top) and MEMM (bottom) representation of
the probability computation for the correct sequence of tags for the back sentence. The HMM
computes the likelihood of the observation given the hidden state, while the MEMM computes
the posterior of each state, conditioned on the previous state and current observation.

8.5.1 Features in a MEMM
Of course we don’t build MEMMs that condition just on wi and ti�1. The reason to
use a discriminative sequence model is that it’s easier to incorporate a lots of fea-
tures.6 Figure 8.13 shows a graphical intuition of some of these additional features.

5 ‘Maximum entropy model’ is an outdated name for logistic regression; see the history section.
6 Because in HMMs all computation is based on the two probabilities P(tag|tag) and P(word|tag), if
we want to include some source of knowledge into the tagging process, we must find a way to encode
the knowledge into one of these two probabilities. Each time we add a feature we have to do a lot of
complicated conditioning which gets harder and harder as we have more and more such features.

HMM:

MEMM:

Features in a MEMM
We can build MEMMs that don’t just condition on wi
and ti-1. It is easy to incorporate lots of features in a
discriminative sequence model.

8.5 • MAXIMUM ENTROPY MARKOV MODELS 19

will

MD VB

Janet back the bill

NNP

<s>

wi wi+1wi-1

ti-1ti-2

wi-1

Figure 8.13 An MEMM for part-of-speech tagging showing the ability to condition on
more features.

A basic MEMM part-of-speech tagger conditions on the observation word it-
self, neighboring words, and previous tags, and various combinations, using feature
templates like the following:templates

hti,wi�2i,hti,wi�1i,hti,wii,hti,wi+1i,hti,wi+2i
hti, ti�1i,hti, ti�2, ti�1i,

hti, ti�1,wii,hti,wi�1,wiihti,wi,wi+1i, (8.33)

Recall from Chapter 5 that feature templates are used to automatically populate the
set of features from every instance in the training and test set. Thus our example
Janet/NNP will/MD back/VB the/DT bill/NN, when wi is the word back, would gen-
erate the following features:

ti = VB and wi�2 = Janet
ti = VB and wi�1 = will
ti = VB and wi = back
ti = VB and wi+1 = the
ti = VB and wi+2 = bill
ti = VB and ti�1 = MD
ti = VB and ti�1 = MD and ti�2 = NNP
ti = VB and wi = back and wi+1 = the

Also necessary are features to deal with unknown words, expressing properties of
the word’s spelling or shape:

wi contains a particular prefix (from all prefixes of length  4)
wi contains a particular suffix (from all suffixes of length  4)
wi contains a number
wi contains an upper-case letter
wi contains a hyphen
wi is all upper case
wi’s word shape
wi’s short word shape
wi is upper case and has a digit and a dash (like CFC-12)
wi is upper case and followed within 3 words by Co., Inc., etc.

Word shape features are used to represent the abstract letter pattern of the wordword shape

by mapping lower-case letters to ‘x’, upper-case to ‘X’, numbers to ’d’, and retaining
punctuation. Thus for example I.M.F would map to X.X.X. and DC10-30 would
map to XXdd-dd. A second class of shorter word shape features is also used. In these
features consecutive character types are removed, so DC10-30 would be mapped to
Xd-d but I.M.F would still map to X.X.X. For example the word well-dressed would
generate the following non-zero valued feature values:

Feature templates
A basic MEMM part-of-speech tagger conditions on the observation
word it- self, neighboring words, and previous tags, and various
combinations, using feature templates like the following

Janet/NNP will/MD back/VB the/DT bill/NN, when wi is the word back

< 𝑡% , 𝑤%'* >,< 𝑡% , 𝑤%'# >, < 𝑡% , 𝑤% >, < 𝑡% , 𝑤%+# >, < 𝑡% , 𝑤%+* >
< 𝑡% , 𝑡%'# >,< 𝑡% , 𝑡% '*, 𝑡% '# >

< 𝑡% , 𝑡% '#, 𝑤% >, < 𝑡% , 𝑤% '#, 𝑤% >,< 𝑡% , 𝑤% , 𝑤%+# >

𝑡! = 𝑉𝐵 and 𝑤! "# = 𝐽𝑎𝑛𝑒𝑡

𝑡! = 𝑉𝐵 and 𝑤! "$ = 𝑤𝑖𝑙𝑙

𝑡! = 𝑉𝐵 and 𝑤! = 𝑏𝑎𝑐𝑘

𝑡! = 𝑉𝐵 and 𝑤!%$ = 𝑡ℎ𝑒

𝑡! = 𝑉𝐵 and 𝑤!%# = 𝑏𝑖𝑙𝑙

𝑡! = 𝑉𝐵 and 𝑡! "$ = 𝑀𝐷

𝑡! = 𝑉𝐵 and 𝑡! "$ = 𝑀𝐷 and 𝑡!"# = 𝑁𝑁𝑃

𝑡! = 𝑉𝐵 and 𝑤! = 𝑏𝑎𝑐𝑘 and 𝑤!%$ = 𝑡ℎ𝑒

Features for unknown words
𝑤" contains a particular prefix (from all prefixes of length ≤ 4)
𝑤" contains a particular suffix (from all suffixes of length ≤ 4)
𝑤" contains a number
𝑤" contains an upper-case letter
𝑤" contains a hyphen
𝑤" is all upper case
𝑤"%s word shape
𝑤"%𝑠 short word shape
𝑤" is upper case and has a digit and a dash (like CFC-12)
𝑤" is upper case and followed within 3 words by Co., Inc., etc.

Features for well-dressed
pre;ix 𝑤" = 𝑤
pre;ix 𝑤" = 𝑤e
pre;ix 𝑤" = 𝑤el
pre;ix 𝑤" = 𝑤𝑒𝑙𝑙
suf;ix 𝑤" = 𝑠𝑠𝑒𝑑
suf;ix 𝑤" = 𝑠𝑒𝑑
suf;ix 𝑤" = 𝑒𝑑
suf;ix 𝑤" = 𝑑
h𝑎𝑠 − ℎ𝑦𝑝ℎ𝑒𝑛 𝑤"
w𝑜𝑟𝑑 − 𝑠ℎ𝑎𝑝𝑒 𝑤" = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥𝑥𝑥𝑥
𝑠ℎ𝑜𝑟𝑡 − 𝑤𝑜𝑟𝑑 − 𝑠ℎ𝑎𝑝𝑒 𝑤" = 𝑥 − 𝑥

Morphologically Rich Languages
Both morphologically rich and highly inflectional languages are
challenging since they have a large vocabulary: a 250,000 word token
corpus of Hungarian has more than twice as many word types as a
similarly sized corpus of English.

For these languages, POS taggers need to label words with case and
gender information as well, resulting in novel tagsets in the form of
sequences of morphological tags rather than a single tag.

Ex. Üzerinde parmak izin kalmiş (iz + Noun + A3sg + P2sg + Nom)

