
Statistical
Constituency
Parsing
JURAFSKY AND MARTIN CHAPTER 14

Based on slides from Sameer Singh,Dan Jurafsky, Noah Smith, Slav Petrov, and everyone else they copied from.

Recap: CKY Algorithm
CKY uses a two-dimensional matrix
to encode the structure of a tree.

For a sentence of length n, we will
use an (n + 1) × (n + 1) matrix.

You can think of the indexes as
pointing at the gaps between the
input words.

All constituents that can span
positions i through j of the input
will be stored in the cell [i,j]

Book the flight through TWA
0 1 2 3 4 5

VP, NP Det Nom

NP

will be stored
in cell [0,1]

will be stored
in cell [1,3]

S

will be stored
in cell [0,3]

[0,1] [0,2] [0,3] [0,4] [0,5]

[1,2] [1,3] [1,4] [1,5]

[2,3] [2,4] [2,5]

[3,4] [3,5]

[4,5]

Book the flight through TWA

i

j

Recap: CKY Algorithm

Book the flight through TWA
0 1 2 3 4 5

VP, NP Det Nom

NP

will be stored
in cell [0,1]

will be stored
in cell [1,3]

S

will be stored
in cell [0,3]

We only work with the upper-triangular portion of the (n + 1) × (n + 1) matrix.
Each cell [i, j] records all non-terminals that can span positions i through j of the input.

Recap: CKY Algorithm

CS 272: STATISTICAL NLP (WINTER 2019)

[0,1] [0,2] [0,3] [0,4] [0,5]

[1,2] [1,3] [1,4] [1,5]

[2,3] [2,4] [2,5]

[3,4] [3,5]

[4,5]

Book the flight through TWA

i

jfunction CKY-PARSE(words, grammar)
returns table

for j←from 1 to LENGTH(words) do
for all {A | A → words[j] ∈ grammar}

table[j−1, j]←table[j−1, j] ∪ A

for i←from j−2 downto 0 do
for k←i+1 to j−1 do

for all {A|A → BC ∈ grammar and
B ∈ table[i,k] and
C ∈ table[k,j]}:

table[i,j]←table[i,j] ∪ A

j iterates
over columns

i iterates
over rows

k iterates
split points
between i
and j

Recap: CKY Algorithm

CS 272: STATISTICAL NLP (WINTER 2019)

[0,1] [0,2] [0,3] [0,4] [0,5]

[1,2] [1,3] [1,4] [1,5]

[2,3] [2,4] [2,5]

[3,4] [3,5]

[4,5]

Book the flight through TWA

i

jfunction CKY-PARSE(words, grammar)
returns table

for j←from 1 to LENGTH(words) do
record POS tags for word j in cell [j,j-1]

for i←from j−2 downto 0 do
for k←i+1 to j−1 do

find all rules A → BC, such that
B spans i-k,
C spans k-j

and then record A in cell [i,j]

Find best parse
CKY parsing record ALL possible parses into the table. How do we figure
out what the best parse is for a sentence?4 CHAPTER 14 • STATISTICAL CONSTITUENCY PARSING

S

VP

NP

Nominal

Noun

flight

Nominal

Noun

dinner

Det

the

Verb

Book

S

VP

NP

Nominal

Noun

flight

NP

Nominal

Noun

dinner

Det

the

Verb

Book

Rules P Rules P
S ! VP .05 S ! VP .05
VP ! Verb NP .20 VP ! Verb NP NP .10
NP ! Det Nominal .20 NP ! Det Nominal .20
Nominal ! Nominal Noun .20 NP ! Nominal .15
Nominal ! Noun .75 Nominal ! Noun .75

Nominal ! Noun .75
Verb ! book .30 Verb ! book .30
Det ! the .60 Det ! the .60
Noun ! dinner .10 Noun ! dinner .10
Noun ! flight .40 Noun ! flight .40

Figure 14.2 Two parse trees for an ambiguous sentence. The parse on the left corresponds
to the sensible meaning “Book a flight that serves dinner”, while the parse on the right corre-
sponds to the nonsensical meaning “Book a flight on behalf of ‘the dinner’ ”.

We can see that the left tree in Fig. 14.2 has a much higher probability than the
tree on the right. Thus, this parse would correctly be chosen by a disambiguation
algorithm that selects the parse with the highest PCFG probability.

Let’s formalize this intuition that picking the parse with the highest probability
is the correct way to do disambiguation. Consider all the possible parse trees for a
given sentence S. The string of words S is called the yield of any parse tree over S.yield

Thus, out of all parse trees with a yield of S, the disambiguation algorithm picks the
parse tree that is most probable given S:

T̂ (S) = argmax
T s.t.S=yield(T)

P(T |S) (14.5)

By definition, the probability P(T |S) can be rewritten as P(T,S)/P(S), thus leading
to

T̂ (S) = argmax
T s.t.S=yield(T)

P(T,S)
P(S)

(14.6)

Since we are maximizing over all parse trees for the same sentence, P(S) will be a

4 CHAPTER 14 • STATISTICAL CONSTITUENCY PARSING

S

VP

NP

Nominal

Noun

flight

Nominal

Noun

dinner

Det

the

Verb

Book

S

VP

NP

Nominal

Noun

flight

NP

Nominal

Noun

dinner

Det

the

Verb

Book

Rules P Rules P
S ! VP .05 S ! VP .05
VP ! Verb NP .20 VP ! Verb NP NP .10
NP ! Det Nominal .20 NP ! Det Nominal .20
Nominal ! Nominal Noun .20 NP ! Nominal .15
Nominal ! Noun .75 Nominal ! Noun .75

Nominal ! Noun .75
Verb ! book .30 Verb ! book .30
Det ! the .60 Det ! the .60
Noun ! dinner .10 Noun ! dinner .10
Noun ! flight .40 Noun ! flight .40

Figure 14.2 Two parse trees for an ambiguous sentence. The parse on the left corresponds
to the sensible meaning “Book a flight that serves dinner”, while the parse on the right corre-
sponds to the nonsensical meaning “Book a flight on behalf of ‘the dinner’ ”.

We can see that the left tree in Fig. 14.2 has a much higher probability than the
tree on the right. Thus, this parse would correctly be chosen by a disambiguation
algorithm that selects the parse with the highest PCFG probability.

Let’s formalize this intuition that picking the parse with the highest probability
is the correct way to do disambiguation. Consider all the possible parse trees for a
given sentence S. The string of words S is called the yield of any parse tree over S.yield

Thus, out of all parse trees with a yield of S, the disambiguation algorithm picks the
parse tree that is most probable given S:

T̂ (S) = argmax
T s.t.S=yield(T)

P(T |S) (14.5)

By definition, the probability P(T |S) can be rewritten as P(T,S)/P(S), thus leading
to

T̂ (S) = argmax
T s.t.S=yield(T)

P(T,S)
P(S)

(14.6)

Since we are maximizing over all parse trees for the same sentence, P(S) will be a

Ambiguity: Which parse?

CS 272: STATISTICAL NLP (WINTER 2019)

Time flies like an arrow.

7

Ambiguity: Which parse?

CS 272: STATISTICAL NLP (WINTER 2019)

Time flies like an arrow.

8https://demo.allennlp.org/constituency-parsing

https://demo.allennlp.org/constituency-parsing

Ambiguity: Which parse?

CS 272: STATISTICAL NLP (WINTER 2019)

Fruit flies like a banana.

9

Ambiguity: Which parse?

CS 272: STATISTICAL NLP (WINTER 2019)

Fruit flies like a banana.

10

Ambiguity: Which parse?

CS 272: STATISTICAL NLP (WINTER 2019)

Fruit flies like a banana.

11

Ambiguity: Which parse?

CS 272: STATISTICAL NLP (WINTER 2019)

Fruit flies like a banana.

12

Ambiguity: Which parse?

CS 272: STATISTICAL NLP (WINTER 2019)

Fruit flies like a banana.

13

Formal Definition of a CFG
A context-free grammar G is defined by four parameters: N, Σ, R, S

N is a set of non-terminal symbols (or variables)
◦ In NLP, we often use the Penn Treebank tag set

Σ is set of terminal symbols
◦ These are the words (also sometimes called the leaf nodes of the parse tree)

R is a set of production rules, each of the form A → β
◦ S → Aux NP VP
◦ Nominal → Nominal Gerund VP (recursive)

S is the start symbol (a non-terminal)

Formal Definition of a PCFG
A PROBABILISTIC context-free grammar G is defined by four
parameters: N, Σ, R, S.

R is a set of production rules, each of the form A → β [probability]
◦ S → NP VP [0.8]
◦ S → Aux NP VP [0.15]
◦ S → VP [0.05]

For a rule A ® B C , the probability can be represented
P(A ® B C)

or
P(A ® B C | A)

or
P(RHS | LHS)

14.1 • PROBABILISTIC CONTEXT-FREE GRAMMARS 3

Grammar Lexicon

S ! NP VP [.80] Det ! that [.10] | a [.30] | the [.60]
S ! Aux NP VP [.15] Noun ! book [.10] | flight [.30]
S ! VP [.05] | meal [.05] | money [.05]
NP ! Pronoun [.35] | flight [.40] | dinner [.10]
NP ! Proper-Noun [.30] Verb ! book [.30] | include [.30]
NP ! Det Nominal [.20] | prefer [.40]
NP ! Nominal [.15] Pronoun ! I [.40] | she [.05]
Nominal ! Noun [.75] | me [.15] | you [.40]
Nominal ! Nominal Noun [.20] Proper-Noun ! Houston [.60]
Nominal ! Nominal PP [.05] | NWA [.40]
VP ! Verb [.35] Aux ! does [.60] | can [.40]
VP ! Verb NP [.20] Preposition ! from [.30] | to [.30]
VP ! Verb NP PP [.10] | on [.20] | near [.15]
VP ! Verb PP [.15] | through [.05]
VP ! Verb NP NP [.05]
VP ! VP PP [.15]
PP ! Preposition NP [1.0]

Figure 14.1 A PCFG that is a probabilistic augmentation of the L1 miniature English CFG
grammar and lexicon of Fig. ??. These probabilities were made up for pedagogical purposes
and are not based on a corpus (since any real corpus would have many more rules, so the true
probabilities of each rule would be much smaller).

parse on the left means “Book a flight that serves dinner”. The nonsensical parse
on the right, however, would have to mean something like “Book a flight on behalf
of ‘the dinner”’ just as a structurally similar sentence like “Can you book John a
flight?” means something like “Can you book a flight on behalf of John?”

The probability of a particular parse T is defined as the product of the probabil-
ities of all the n rules used to expand each of the n non-terminal nodes in the parse
tree T, where each rule i can be expressed as LHSi ! RHSi:

P(T,S) =
nY

i=1

P(RHSi|LHSi) (14.2)

The resulting probability P(T,S) is both the joint probability of the parse and the
sentence and also the probability of the parse P(T). How can this be true? First, by
the definition of joint probability:

P(T,S) = P(T)P(S|T) (14.3)

But since a parse tree includes all the words of the sentence, P(S|T) is 1. Thus,

P(T,S) = P(T)P(S|T) = P(T) (14.4)

We can compute the probability of each of the trees in Fig. 14.2 by multiplying
the probabilities of each of the rules used in the derivation. For example, the proba-
bility of the left tree in Fig. 14.2a (call it Tle f t) and the right tree (Fig. 14.2b or Tright)
can be computed as follows:

P(Tle f t) = .05⇤ .20⇤ .20⇤ .20⇤ .75⇤ .30⇤ .60⇤ .10⇤ .40 = 2.2⇥10
�6

P(Tright) = .05⇤ .10⇤ .20⇤ .15⇤ .75⇤ .75⇤ .30⇤ .60⇤ .10⇤ .40 = 6.1⇥10
�7

2 CHAPTER 14 • STATISTICAL CONSTITUENCY PARSING

N a set of non-terminal symbols (or variables)
S a set of terminal symbols (disjoint from N)
R a set of rules or productions, each of the form A ! b [p],

where A is a non-terminal,
b is a string of symbols from the infinite set of strings (S[N)⇤,
and p is a number between 0 and 1 expressing P(b |A)

S a designated start symbol

That is, a PCFG differs from a standard CFG by augmenting each rule in R with
a conditional probability:

A ! b [p] (14.1)

Here p expresses the probability that the given non-terminal A will be expanded
to the sequence b . That is, p is the conditional probability of a given expansion b
given the left-hand-side (LHS) non-terminal A. We can represent this probability as

P(A ! b)

or as
P(A ! b |A)

or as
P(RHS|LHS)

Thus, if we consider all the possible expansions of a non-terminal, the sum of their
probabilities must be 1: X

b

P(A ! b) = 1

Figure 14.1 shows a PCFG: a probabilistic augmentation of the L1 miniature En-
glish CFG grammar and lexicon. Note that the probabilities of all of the expansions
of each non-terminal sum to 1. Also note that these probabilities were made up
for pedagogical purposes. A real grammar has a great many more rules for each
non-terminal; hence, the probabilities of any particular rule would tend to be much
smaller.

A PCFG is said to be consistent if the sum of the probabilities of all sentencesconsistent

in the language equals 1. Certain kinds of recursive rules cause a grammar to be
inconsistent by causing infinitely looping derivations for some sentences. For ex-
ample, a rule S ! S with probability 1 would lead to lost probability mass due to
derivations that never terminate. See Booth and Thompson (1973) for more details
on consistent and inconsistent grammars.

How are PCFGs used? A PCFG can be used to estimate a number of useful
probabilities concerning a sentence and its parse tree(s), including the probability of
a particular parse tree (useful in disambiguation) and the probability of a sentence
or a piece of a sentence (useful in language modeling). Let’s see how this works.

14.1.1 PCFGs for Disambiguation

A PCFG assigns a probability to each parse tree T (i.e., each derivation) of a sen-
tence S. This attribute is useful in disambiguation. For example, consider the two
parses of the sentence “Book the dinner flight” shown in Fig. 14.2. The sensible

Probabilistic CFGs
A PCFG assigns a probability to each parse tree T of a sentence S. This is
useful in disambiguation, since we can pick the most likely parse tree.

The probability of a parse T is defined as the product of the probabilities
of all the rules used to expand each of the non-terminal nodes in the
parse tree.

14.1 • PROBABILISTIC CONTEXT-FREE GRAMMARS 3

Grammar Lexicon

S ! NP VP [.80] Det ! that [.10] | a [.30] | the [.60]
S ! Aux NP VP [.15] Noun ! book [.10] | flight [.30]
S ! VP [.05] | meal [.05] | money [.05]
NP ! Pronoun [.35] | flight [.40] | dinner [.10]
NP ! Proper-Noun [.30] Verb ! book [.30] | include [.30]
NP ! Det Nominal [.20] | prefer [.40]
NP ! Nominal [.15] Pronoun ! I [.40] | she [.05]
Nominal ! Noun [.75] | me [.15] | you [.40]
Nominal ! Nominal Noun [.20] Proper-Noun ! Houston [.60]
Nominal ! Nominal PP [.05] | NWA [.40]
VP ! Verb [.35] Aux ! does [.60] | can [.40]
VP ! Verb NP [.20] Preposition ! from [.30] | to [.30]
VP ! Verb NP PP [.10] | on [.20] | near [.15]
VP ! Verb PP [.15] | through [.05]
VP ! Verb NP NP [.05]
VP ! VP PP [.15]
PP ! Preposition NP [1.0]

Figure 14.1 A PCFG that is a probabilistic augmentation of the L1 miniature English CFG
grammar and lexicon of Fig. ??. These probabilities were made up for pedagogical purposes
and are not based on a corpus (since any real corpus would have many more rules, so the true
probabilities of each rule would be much smaller).

parse on the left means “Book a flight that serves dinner”. The nonsensical parse
on the right, however, would have to mean something like “Book a flight on behalf
of ‘the dinner”’ just as a structurally similar sentence like “Can you book John a
flight?” means something like “Can you book a flight on behalf of John?”

The probability of a particular parse T is defined as the product of the probabil-
ities of all the n rules used to expand each of the n non-terminal nodes in the parse
tree T, where each rule i can be expressed as LHSi ! RHSi:

P(T,S) =
nY

i=1

P(RHSi|LHSi) (14.2)

The resulting probability P(T,S) is both the joint probability of the parse and the
sentence and also the probability of the parse P(T). How can this be true? First, by
the definition of joint probability:

P(T,S) = P(T)P(S|T) (14.3)

But since a parse tree includes all the words of the sentence, P(S|T) is 1. Thus,

P(T,S) = P(T)P(S|T) = P(T) (14.4)

We can compute the probability of each of the trees in Fig. 14.2 by multiplying
the probabilities of each of the rules used in the derivation. For example, the proba-
bility of the left tree in Fig. 14.2a (call it Tle f t) and the right tree (Fig. 14.2b or Tright)
can be computed as follows:

P(Tle f t) = .05⇤ .20⇤ .20⇤ .20⇤ .75⇤ .30⇤ .60⇤ .10⇤ .40 = 2.2⇥10
�6

P(Tright) = .05⇤ .10⇤ .20⇤ .15⇤ .75⇤ .75⇤ .30⇤ .60⇤ .10⇤ .40 = 6.1⇥10
�7

Probability of a parse
4 CHAPTER 14 • STATISTICAL CONSTITUENCY PARSING

S

VP

NP

Nominal

Noun

flight

Nominal

Noun

dinner

Det

the

Verb

Book

S

VP

NP

Nominal

Noun

flight

NP

Nominal

Noun

dinner

Det

the

Verb

Book

Rules P Rules P
S ! VP .05 S ! VP .05
VP ! Verb NP .20 VP ! Verb NP NP .10
NP ! Det Nominal .20 NP ! Det Nominal .20
Nominal ! Nominal Noun .20 NP ! Nominal .15
Nominal ! Noun .75 Nominal ! Noun .75

Nominal ! Noun .75
Verb ! book .30 Verb ! book .30
Det ! the .60 Det ! the .60
Noun ! dinner .10 Noun ! dinner .10
Noun ! flight .40 Noun ! flight .40

Figure 14.2 Two parse trees for an ambiguous sentence. The parse on the left corresponds
to the sensible meaning “Book a flight that serves dinner”, while the parse on the right corre-
sponds to the nonsensical meaning “Book a flight on behalf of ‘the dinner’ ”.

We can see that the left tree in Fig. 14.2 has a much higher probability than the
tree on the right. Thus, this parse would correctly be chosen by a disambiguation
algorithm that selects the parse with the highest PCFG probability.

Let’s formalize this intuition that picking the parse with the highest probability
is the correct way to do disambiguation. Consider all the possible parse trees for a
given sentence S. The string of words S is called the yield of any parse tree over S.yield

Thus, out of all parse trees with a yield of S, the disambiguation algorithm picks the
parse tree that is most probable given S:

T̂ (S) = argmax
T s.t.S=yield(T)

P(T |S) (14.5)

By definition, the probability P(T |S) can be rewritten as P(T,S)/P(S), thus leading
to

T̂ (S) = argmax
T s.t.S=yield(T)

P(T,S)
P(S)

(14.6)

Since we are maximizing over all parse trees for the same sentence, P(S) will be a

4 CHAPTER 14 • STATISTICAL CONSTITUENCY PARSING

S

VP

NP

Nominal

Noun

flight

Nominal

Noun

dinner

Det

the

Verb

Book

S

VP

NP

Nominal

Noun

flight

NP

Nominal

Noun

dinner

Det

the

Verb

Book

Rules P Rules P
S ! VP .05 S ! VP .05
VP ! Verb NP .20 VP ! Verb NP NP .10
NP ! Det Nominal .20 NP ! Det Nominal .20
Nominal ! Nominal Noun .20 NP ! Nominal .15
Nominal ! Noun .75 Nominal ! Noun .75

Nominal ! Noun .75
Verb ! book .30 Verb ! book .30
Det ! the .60 Det ! the .60
Noun ! dinner .10 Noun ! dinner .10
Noun ! flight .40 Noun ! flight .40

Figure 14.2 Two parse trees for an ambiguous sentence. The parse on the left corresponds
to the sensible meaning “Book a flight that serves dinner”, while the parse on the right corre-
sponds to the nonsensical meaning “Book a flight on behalf of ‘the dinner’ ”.

We can see that the left tree in Fig. 14.2 has a much higher probability than the
tree on the right. Thus, this parse would correctly be chosen by a disambiguation
algorithm that selects the parse with the highest PCFG probability.

Let’s formalize this intuition that picking the parse with the highest probability
is the correct way to do disambiguation. Consider all the possible parse trees for a
given sentence S. The string of words S is called the yield of any parse tree over S.yield

Thus, out of all parse trees with a yield of S, the disambiguation algorithm picks the
parse tree that is most probable given S:

T̂ (S) = argmax
T s.t.S=yield(T)

P(T |S) (14.5)

By definition, the probability P(T |S) can be rewritten as P(T,S)/P(S), thus leading
to

T̂ (S) = argmax
T s.t.S=yield(T)

P(T,S)
P(S)

(14.6)

Since we are maximizing over all parse trees for the same sentence, P(S) will be a

14.1 • PROBABILISTIC CONTEXT-FREE GRAMMARS 3

Grammar Lexicon

S ! NP VP [.80] Det ! that [.10] | a [.30] | the [.60]
S ! Aux NP VP [.15] Noun ! book [.10] | flight [.30]
S ! VP [.05] | meal [.05] | money [.05]
NP ! Pronoun [.35] | flight [.40] | dinner [.10]
NP ! Proper-Noun [.30] Verb ! book [.30] | include [.30]
NP ! Det Nominal [.20] | prefer [.40]
NP ! Nominal [.15] Pronoun ! I [.40] | she [.05]
Nominal ! Noun [.75] | me [.15] | you [.40]
Nominal ! Nominal Noun [.20] Proper-Noun ! Houston [.60]
Nominal ! Nominal PP [.05] | NWA [.40]
VP ! Verb [.35] Aux ! does [.60] | can [.40]
VP ! Verb NP [.20] Preposition ! from [.30] | to [.30]
VP ! Verb NP PP [.10] | on [.20] | near [.15]
VP ! Verb PP [.15] | through [.05]
VP ! Verb NP NP [.05]
VP ! VP PP [.15]
PP ! Preposition NP [1.0]

Figure 14.1 A PCFG that is a probabilistic augmentation of the L1 miniature English CFG
grammar and lexicon of Fig. ??. These probabilities were made up for pedagogical purposes
and are not based on a corpus (since any real corpus would have many more rules, so the true
probabilities of each rule would be much smaller).

parse on the left means “Book a flight that serves dinner”. The nonsensical parse
on the right, however, would have to mean something like “Book a flight on behalf
of ‘the dinner”’ just as a structurally similar sentence like “Can you book John a
flight?” means something like “Can you book a flight on behalf of John?”

The probability of a particular parse T is defined as the product of the probabil-
ities of all the n rules used to expand each of the n non-terminal nodes in the parse
tree T, where each rule i can be expressed as LHSi ! RHSi:

P(T,S) =
nY

i=1

P(RHSi|LHSi) (14.2)

The resulting probability P(T,S) is both the joint probability of the parse and the
sentence and also the probability of the parse P(T). How can this be true? First, by
the definition of joint probability:

P(T,S) = P(T)P(S|T) (14.3)

But since a parse tree includes all the words of the sentence, P(S|T) is 1. Thus,

P(T,S) = P(T)P(S|T) = P(T) (14.4)

We can compute the probability of each of the trees in Fig. 14.2 by multiplying
the probabilities of each of the rules used in the derivation. For example, the proba-
bility of the left tree in Fig. 14.2a (call it Tle f t) and the right tree (Fig. 14.2b or Tright)
can be computed as follows:

P(Tle f t) = .05⇤ .20⇤ .20⇤ .20⇤ .75⇤ .30⇤ .60⇤ .10⇤ .40 = 2.2⇥10
�6

P(Tright) = .05⇤ .10⇤ .20⇤ .15⇤ .75⇤ .75⇤ .30⇤ .60⇤ .10⇤ .40 = 6.1⇥10
�7

14.1 • PROBABILISTIC CONTEXT-FREE GRAMMARS 3

Grammar Lexicon

S ! NP VP [.80] Det ! that [.10] | a [.30] | the [.60]
S ! Aux NP VP [.15] Noun ! book [.10] | flight [.30]
S ! VP [.05] | meal [.05] | money [.05]
NP ! Pronoun [.35] | flight [.40] | dinner [.10]
NP ! Proper-Noun [.30] Verb ! book [.30] | include [.30]
NP ! Det Nominal [.20] | prefer [.40]
NP ! Nominal [.15] Pronoun ! I [.40] | she [.05]
Nominal ! Noun [.75] | me [.15] | you [.40]
Nominal ! Nominal Noun [.20] Proper-Noun ! Houston [.60]
Nominal ! Nominal PP [.05] | NWA [.40]
VP ! Verb [.35] Aux ! does [.60] | can [.40]
VP ! Verb NP [.20] Preposition ! from [.30] | to [.30]
VP ! Verb NP PP [.10] | on [.20] | near [.15]
VP ! Verb PP [.15] | through [.05]
VP ! Verb NP NP [.05]
VP ! VP PP [.15]
PP ! Preposition NP [1.0]

Figure 14.1 A PCFG that is a probabilistic augmentation of the L1 miniature English CFG
grammar and lexicon of Fig. ??. These probabilities were made up for pedagogical purposes
and are not based on a corpus (since any real corpus would have many more rules, so the true
probabilities of each rule would be much smaller).

parse on the left means “Book a flight that serves dinner”. The nonsensical parse
on the right, however, would have to mean something like “Book a flight on behalf
of ‘the dinner”’ just as a structurally similar sentence like “Can you book John a
flight?” means something like “Can you book a flight on behalf of John?”

The probability of a particular parse T is defined as the product of the probabil-
ities of all the n rules used to expand each of the n non-terminal nodes in the parse
tree T, where each rule i can be expressed as LHSi ! RHSi:

P(T,S) =
nY

i=1

P(RHSi|LHSi) (14.2)

The resulting probability P(T,S) is both the joint probability of the parse and the
sentence and also the probability of the parse P(T). How can this be true? First, by
the definition of joint probability:

P(T,S) = P(T)P(S|T) (14.3)

But since a parse tree includes all the words of the sentence, P(S|T) is 1. Thus,

P(T,S) = P(T)P(S|T) = P(T) (14.4)

We can compute the probability of each of the trees in Fig. 14.2 by multiplying
the probabilities of each of the rules used in the derivation. For example, the proba-
bility of the left tree in Fig. 14.2a (call it Tle f t) and the right tree (Fig. 14.2b or Tright)
can be computed as follows:

P(Tle f t) = .05⇤ .20⇤ .20⇤ .20⇤ .75⇤ .30⇤ .60⇤ .10⇤ .40 = 2.2⇥10
�6

P(Tright) = .05⇤ .10⇤ .20⇤ .15⇤ .75⇤ .75⇤ .30⇤ .60⇤ .10⇤ .40 = 6.1⇥10
�7

Probability of a parse4 CHAPTER 14 • STATISTICAL CONSTITUENCY PARSING

S

VP

NP

Nominal

Noun

flight

Nominal

Noun

dinner

Det

the

Verb

Book

S

VP

NP

Nominal

Noun

flight

NP

Nominal

Noun

dinner

Det

the

Verb

Book

Rules P Rules P
S ! VP .05 S ! VP .05
VP ! Verb NP .20 VP ! Verb NP NP .10
NP ! Det Nominal .20 NP ! Det Nominal .20
Nominal ! Nominal Noun .20 NP ! Nominal .15
Nominal ! Noun .75 Nominal ! Noun .75

Nominal ! Noun .75
Verb ! book .30 Verb ! book .30
Det ! the .60 Det ! the .60
Noun ! dinner .10 Noun ! dinner .10
Noun ! flight .40 Noun ! flight .40

Figure 14.2 Two parse trees for an ambiguous sentence. The parse on the left corresponds
to the sensible meaning “Book a flight that serves dinner”, while the parse on the right corre-
sponds to the nonsensical meaning “Book a flight on behalf of ‘the dinner’ ”.

We can see that the left tree in Fig. 14.2 has a much higher probability than the
tree on the right. Thus, this parse would correctly be chosen by a disambiguation
algorithm that selects the parse with the highest PCFG probability.

Let’s formalize this intuition that picking the parse with the highest probability
is the correct way to do disambiguation. Consider all the possible parse trees for a
given sentence S. The string of words S is called the yield of any parse tree over S.yield

Thus, out of all parse trees with a yield of S, the disambiguation algorithm picks the
parse tree that is most probable given S:

T̂ (S) = argmax
T s.t.S=yield(T)

P(T |S) (14.5)

By definition, the probability P(T |S) can be rewritten as P(T,S)/P(S), thus leading
to

T̂ (S) = argmax
T s.t.S=yield(T)

P(T,S)
P(S)

(14.6)

Since we are maximizing over all parse trees for the same sentence, P(S) will be a

4 CHAPTER 14 • STATISTICAL CONSTITUENCY PARSING

S

VP

NP

Nominal

Noun

flight

Nominal

Noun

dinner

Det

the

Verb

Book

S

VP

NP

Nominal

Noun

flight

NP

Nominal

Noun

dinner

Det

the

Verb

Book

Rules P Rules P
S ! VP .05 S ! VP .05
VP ! Verb NP .20 VP ! Verb NP NP .10
NP ! Det Nominal .20 NP ! Det Nominal .20
Nominal ! Nominal Noun .20 NP ! Nominal .15
Nominal ! Noun .75 Nominal ! Noun .75

Nominal ! Noun .75
Verb ! book .30 Verb ! book .30
Det ! the .60 Det ! the .60
Noun ! dinner .10 Noun ! dinner .10
Noun ! flight .40 Noun ! flight .40

Figure 14.2 Two parse trees for an ambiguous sentence. The parse on the left corresponds
to the sensible meaning “Book a flight that serves dinner”, while the parse on the right corre-
sponds to the nonsensical meaning “Book a flight on behalf of ‘the dinner’ ”.

We can see that the left tree in Fig. 14.2 has a much higher probability than the
tree on the right. Thus, this parse would correctly be chosen by a disambiguation
algorithm that selects the parse with the highest PCFG probability.

Let’s formalize this intuition that picking the parse with the highest probability
is the correct way to do disambiguation. Consider all the possible parse trees for a
given sentence S. The string of words S is called the yield of any parse tree over S.yield

Thus, out of all parse trees with a yield of S, the disambiguation algorithm picks the
parse tree that is most probable given S:

T̂ (S) = argmax
T s.t.S=yield(T)

P(T |S) (14.5)

By definition, the probability P(T |S) can be rewritten as P(T,S)/P(S), thus leading
to

T̂ (S) = argmax
T s.t.S=yield(T)

P(T,S)
P(S)

(14.6)

Since we are maximizing over all parse trees for the same sentence, P(S) will be a

14.1 • PROBABILISTIC CONTEXT-FREE GRAMMARS 3

Grammar Lexicon

S ! NP VP [.80] Det ! that [.10] | a [.30] | the [.60]
S ! Aux NP VP [.15] Noun ! book [.10] | flight [.30]
S ! VP [.05] | meal [.05] | money [.05]
NP ! Pronoun [.35] | flight [.40] | dinner [.10]
NP ! Proper-Noun [.30] Verb ! book [.30] | include [.30]
NP ! Det Nominal [.20] | prefer [.40]
NP ! Nominal [.15] Pronoun ! I [.40] | she [.05]
Nominal ! Noun [.75] | me [.15] | you [.40]
Nominal ! Nominal Noun [.20] Proper-Noun ! Houston [.60]
Nominal ! Nominal PP [.05] | NWA [.40]
VP ! Verb [.35] Aux ! does [.60] | can [.40]
VP ! Verb NP [.20] Preposition ! from [.30] | to [.30]
VP ! Verb NP PP [.10] | on [.20] | near [.15]
VP ! Verb PP [.15] | through [.05]
VP ! Verb NP NP [.05]
VP ! VP PP [.15]
PP ! Preposition NP [1.0]

Figure 14.1 A PCFG that is a probabilistic augmentation of the L1 miniature English CFG
grammar and lexicon of Fig. ??. These probabilities were made up for pedagogical purposes
and are not based on a corpus (since any real corpus would have many more rules, so the true
probabilities of each rule would be much smaller).

parse on the left means “Book a flight that serves dinner”. The nonsensical parse
on the right, however, would have to mean something like “Book a flight on behalf
of ‘the dinner”’ just as a structurally similar sentence like “Can you book John a
flight?” means something like “Can you book a flight on behalf of John?”

The probability of a particular parse T is defined as the product of the probabil-
ities of all the n rules used to expand each of the n non-terminal nodes in the parse
tree T, where each rule i can be expressed as LHSi ! RHSi:

P(T,S) =
nY

i=1

P(RHSi|LHSi) (14.2)

The resulting probability P(T,S) is both the joint probability of the parse and the
sentence and also the probability of the parse P(T). How can this be true? First, by
the definition of joint probability:

P(T,S) = P(T)P(S|T) (14.3)

But since a parse tree includes all the words of the sentence, P(S|T) is 1. Thus,

P(T,S) = P(T)P(S|T) = P(T) (14.4)

We can compute the probability of each of the trees in Fig. 14.2 by multiplying
the probabilities of each of the rules used in the derivation. For example, the proba-
bility of the left tree in Fig. 14.2a (call it Tle f t) and the right tree (Fig. 14.2b or Tright)
can be computed as follows:

P(Tle f t) = .05⇤ .20⇤ .20⇤ .20⇤ .75⇤ .30⇤ .60⇤ .10⇤ .40 = 2.2⇥10
�6

P(Tright) = .05⇤ .10⇤ .20⇤ .15⇤ .75⇤ .75⇤ .30⇤ .60⇤ .10⇤ .40 = 6.1⇥10
�7

14.1 • PROBABILISTIC CONTEXT-FREE GRAMMARS 3

Grammar Lexicon

S ! NP VP [.80] Det ! that [.10] | a [.30] | the [.60]
S ! Aux NP VP [.15] Noun ! book [.10] | flight [.30]
S ! VP [.05] | meal [.05] | money [.05]
NP ! Pronoun [.35] | flight [.40] | dinner [.10]
NP ! Proper-Noun [.30] Verb ! book [.30] | include [.30]
NP ! Det Nominal [.20] | prefer [.40]
NP ! Nominal [.15] Pronoun ! I [.40] | she [.05]
Nominal ! Noun [.75] | me [.15] | you [.40]
Nominal ! Nominal Noun [.20] Proper-Noun ! Houston [.60]
Nominal ! Nominal PP [.05] | NWA [.40]
VP ! Verb [.35] Aux ! does [.60] | can [.40]
VP ! Verb NP [.20] Preposition ! from [.30] | to [.30]
VP ! Verb NP PP [.10] | on [.20] | near [.15]
VP ! Verb PP [.15] | through [.05]
VP ! Verb NP NP [.05]
VP ! VP PP [.15]
PP ! Preposition NP [1.0]

Figure 14.1 A PCFG that is a probabilistic augmentation of the L1 miniature English CFG
grammar and lexicon of Fig. ??. These probabilities were made up for pedagogical purposes
and are not based on a corpus (since any real corpus would have many more rules, so the true
probabilities of each rule would be much smaller).

parse on the left means “Book a flight that serves dinner”. The nonsensical parse
on the right, however, would have to mean something like “Book a flight on behalf
of ‘the dinner”’ just as a structurally similar sentence like “Can you book John a
flight?” means something like “Can you book a flight on behalf of John?”

The probability of a particular parse T is defined as the product of the probabil-
ities of all the n rules used to expand each of the n non-terminal nodes in the parse
tree T, where each rule i can be expressed as LHSi ! RHSi:

P(T,S) =
nY

i=1

P(RHSi|LHSi) (14.2)

The resulting probability P(T,S) is both the joint probability of the parse and the
sentence and also the probability of the parse P(T). How can this be true? First, by
the definition of joint probability:

P(T,S) = P(T)P(S|T) (14.3)

But since a parse tree includes all the words of the sentence, P(S|T) is 1. Thus,

P(T,S) = P(T)P(S|T) = P(T) (14.4)

We can compute the probability of each of the trees in Fig. 14.2 by multiplying
the probabilities of each of the rules used in the derivation. For example, the proba-
bility of the left tree in Fig. 14.2a (call it Tle f t) and the right tree (Fig. 14.2b or Tright)
can be computed as follows:

P(Tle f t) = .05⇤ .20⇤ .20⇤ .20⇤ .75⇤ .30⇤ .60⇤ .10⇤ .40 = 2.2⇥10
�6

P(Tright) = .05⇤ .10⇤ .20⇤ .15⇤ .75⇤ .75⇤ .30⇤ .60⇤ .10⇤ .40 = 6.1⇥10
�7

Finding best parse
Pick the parse with the highest probability. Consider all the possible
parse trees for a given sentence S. The string of words S is called the
yield of any parse tree over S.

22

4 CHAPTER 14 • STATISTICAL CONSTITUENCY PARSING

S

VP

NP

Nominal

Noun

flight

Nominal

Noun

dinner

Det

the

Verb

Book

S

VP

NP

Nominal

Noun

flight

NP

Nominal

Noun

dinner

Det

the

Verb

Book

Rules P Rules P
S ! VP .05 S ! VP .05
VP ! Verb NP .20 VP ! Verb NP NP .10
NP ! Det Nominal .20 NP ! Det Nominal .20
Nominal ! Nominal Noun .20 NP ! Nominal .15
Nominal ! Noun .75 Nominal ! Noun .75

Nominal ! Noun .75
Verb ! book .30 Verb ! book .30
Det ! the .60 Det ! the .60
Noun ! dinner .10 Noun ! dinner .10
Noun ! flight .40 Noun ! flight .40

Figure 14.2 Two parse trees for an ambiguous sentence. The parse on the left corresponds
to the sensible meaning “Book a flight that serves dinner”, while the parse on the right corre-
sponds to the nonsensical meaning “Book a flight on behalf of ‘the dinner’ ”.

We can see that the left tree in Fig. 14.2 has a much higher probability than the
tree on the right. Thus, this parse would correctly be chosen by a disambiguation
algorithm that selects the parse with the highest PCFG probability.

Let’s formalize this intuition that picking the parse with the highest probability
is the correct way to do disambiguation. Consider all the possible parse trees for a
given sentence S. The string of words S is called the yield of any parse tree over S.yield

Thus, out of all parse trees with a yield of S, the disambiguation algorithm picks the
parse tree that is most probable given S:

T̂ (S) = argmax
T s.t.S=yield(T)

P(T |S) (14.5)

By definition, the probability P(T |S) can be rewritten as P(T,S)/P(S), thus leading
to

T̂ (S) = argmax
T s.t.S=yield(T)

P(T,S)
P(S)

(14.6)

Since we are maximizing over all parse trees for the same sentence, P(S) will be a

4 CHAPTER 14 • STATISTICAL CONSTITUENCY PARSING

S

VP

NP

Nominal

Noun

flight

Nominal

Noun

dinner

Det

the

Verb

Book

S

VP

NP

Nominal

Noun

flight

NP

Nominal

Noun

dinner

Det

the

Verb

Book

Rules P Rules P
S ! VP .05 S ! VP .05
VP ! Verb NP .20 VP ! Verb NP NP .10
NP ! Det Nominal .20 NP ! Det Nominal .20
Nominal ! Nominal Noun .20 NP ! Nominal .15
Nominal ! Noun .75 Nominal ! Noun .75

Nominal ! Noun .75
Verb ! book .30 Verb ! book .30
Det ! the .60 Det ! the .60
Noun ! dinner .10 Noun ! dinner .10
Noun ! flight .40 Noun ! flight .40

Figure 14.2 Two parse trees for an ambiguous sentence. The parse on the left corresponds
to the sensible meaning “Book a flight that serves dinner”, while the parse on the right corre-
sponds to the nonsensical meaning “Book a flight on behalf of ‘the dinner’ ”.

We can see that the left tree in Fig. 14.2 has a much higher probability than the
tree on the right. Thus, this parse would correctly be chosen by a disambiguation
algorithm that selects the parse with the highest PCFG probability.

Let’s formalize this intuition that picking the parse with the highest probability
is the correct way to do disambiguation. Consider all the possible parse trees for a
given sentence S. The string of words S is called the yield of any parse tree over S.yield

Thus, out of all parse trees with a yield of S, the disambiguation algorithm picks the
parse tree that is most probable given S:

T̂ (S) = argmax
T s.t.S=yield(T)

P(T |S) (14.5)

By definition, the probability P(T |S) can be rewritten as P(T,S)/P(S), thus leading
to

T̂ (S) = argmax
T s.t.S=yield(T)

P(T,S)
P(S)

(14.6)

Since we are maximizing over all parse trees for the same sentence, P(S) will be a

4 CHAPTER 14 • STATISTICAL CONSTITUENCY PARSING

S

VP

NP

Nominal

Noun

flight

Nominal

Noun

dinner

Det

the

Verb

Book

S

VP

NP

Nominal

Noun

flight

NP

Nominal

Noun

dinner

Det

the

Verb

Book

Rules P Rules P
S ! VP .05 S ! VP .05
VP ! Verb NP .20 VP ! Verb NP NP .10
NP ! Det Nominal .20 NP ! Det Nominal .20
Nominal ! Nominal Noun .20 NP ! Nominal .15
Nominal ! Noun .75 Nominal ! Noun .75

Nominal ! Noun .75
Verb ! book .30 Verb ! book .30
Det ! the .60 Det ! the .60
Noun ! dinner .10 Noun ! dinner .10
Noun ! flight .40 Noun ! flight .40

Figure 14.2 Two parse trees for an ambiguous sentence. The parse on the left corresponds
to the sensible meaning “Book a flight that serves dinner”, while the parse on the right corre-
sponds to the nonsensical meaning “Book a flight on behalf of ‘the dinner’ ”.

We can see that the left tree in Fig. 14.2 has a much higher probability than the
tree on the right. Thus, this parse would correctly be chosen by a disambiguation
algorithm that selects the parse with the highest PCFG probability.

Let’s formalize this intuition that picking the parse with the highest probability
is the correct way to do disambiguation. Consider all the possible parse trees for a
given sentence S. The string of words S is called the yield of any parse tree over S.yield

Thus, out of all parse trees with a yield of S, the disambiguation algorithm picks the
parse tree that is most probable given S:

T̂ (S) = argmax
T s.t.S=yield(T)

P(T |S) (14.5)

By definition, the probability P(T |S) can be rewritten as P(T,S)/P(S), thus leading
to

T̂ (S) = argmax
T s.t.S=yield(T)

P(T,S)
P(S)

(14.6)

Since we are maximizing over all parse trees for the same sentence, P(S) will be a

Joint Probability of T and S

14.1 • PROBABILISTIC CONTEXT-FREE GRAMMARS 3

Grammar Lexicon

S ! NP VP [.80] Det ! that [.10] | a [.30] | the [.60]
S ! Aux NP VP [.15] Noun ! book [.10] | flight [.30]
S ! VP [.05] | meal [.05] | money [.05]
NP ! Pronoun [.35] | flight [.40] | dinner [.10]
NP ! Proper-Noun [.30] Verb ! book [.30] | include [.30]
NP ! Det Nominal [.20] | prefer [.40]
NP ! Nominal [.15] Pronoun ! I [.40] | she [.05]
Nominal ! Noun [.75] | me [.15] | you [.40]
Nominal ! Nominal Noun [.20] Proper-Noun ! Houston [.60]
Nominal ! Nominal PP [.05] | NWA [.40]
VP ! Verb [.35] Aux ! does [.60] | can [.40]
VP ! Verb NP [.20] Preposition ! from [.30] | to [.30]
VP ! Verb NP PP [.10] | on [.20] | near [.15]
VP ! Verb PP [.15] | through [.05]
VP ! Verb NP NP [.05]
VP ! VP PP [.15]
PP ! Preposition NP [1.0]

Figure 14.1 A PCFG that is a probabilistic augmentation of the L1 miniature English CFG
grammar and lexicon of Fig. ??. These probabilities were made up for pedagogical purposes
and are not based on a corpus (since any real corpus would have many more rules, so the true
probabilities of each rule would be much smaller).

parse on the left means “Book a flight that serves dinner”. The nonsensical parse
on the right, however, would have to mean something like “Book a flight on behalf
of ‘the dinner”’ just as a structurally similar sentence like “Can you book John a
flight?” means something like “Can you book a flight on behalf of John?”

The probability of a particular parse T is defined as the product of the probabil-
ities of all the n rules used to expand each of the n non-terminal nodes in the parse
tree T, where each rule i can be expressed as LHSi ! RHSi:

P(T,S) =
nY

i=1

P(RHSi|LHSi) (14.2)

The resulting probability P(T,S) is both the joint probability of the parse and the
sentence and also the probability of the parse P(T). How can this be true? First, by
the definition of joint probability:

P(T,S) = P(T)P(S|T) (14.3)

But since a parse tree includes all the words of the sentence, P(S|T) is 1. Thus,

P(T,S) = P(T)P(S|T) = P(T) (14.4)

We can compute the probability of each of the trees in Fig. 14.2 by multiplying
the probabilities of each of the rules used in the derivation. For example, the proba-
bility of the left tree in Fig. 14.2a (call it Tle f t) and the right tree (Fig. 14.2b or Tright)
can be computed as follows:

P(Tle f t) = .05⇤ .20⇤ .20⇤ .20⇤ .75⇤ .30⇤ .60⇤ .10⇤ .40 = 2.2⇥10
�6

P(Tright) = .05⇤ .10⇤ .20⇤ .15⇤ .75⇤ .75⇤ .30⇤ .60⇤ .10⇤ .40 = 6.1⇥10
�7

14.1 • PROBABILISTIC CONTEXT-FREE GRAMMARS 3

Grammar Lexicon

S ! NP VP [.80] Det ! that [.10] | a [.30] | the [.60]
S ! Aux NP VP [.15] Noun ! book [.10] | flight [.30]
S ! VP [.05] | meal [.05] | money [.05]
NP ! Pronoun [.35] | flight [.40] | dinner [.10]
NP ! Proper-Noun [.30] Verb ! book [.30] | include [.30]
NP ! Det Nominal [.20] | prefer [.40]
NP ! Nominal [.15] Pronoun ! I [.40] | she [.05]
Nominal ! Noun [.75] | me [.15] | you [.40]
Nominal ! Nominal Noun [.20] Proper-Noun ! Houston [.60]
Nominal ! Nominal PP [.05] | NWA [.40]
VP ! Verb [.35] Aux ! does [.60] | can [.40]
VP ! Verb NP [.20] Preposition ! from [.30] | to [.30]
VP ! Verb NP PP [.10] | on [.20] | near [.15]
VP ! Verb PP [.15] | through [.05]
VP ! Verb NP NP [.05]
VP ! VP PP [.15]
PP ! Preposition NP [1.0]

Figure 14.1 A PCFG that is a probabilistic augmentation of the L1 miniature English CFG
grammar and lexicon of Fig. ??. These probabilities were made up for pedagogical purposes
and are not based on a corpus (since any real corpus would have many more rules, so the true
probabilities of each rule would be much smaller).

parse on the left means “Book a flight that serves dinner”. The nonsensical parse
on the right, however, would have to mean something like “Book a flight on behalf
of ‘the dinner”’ just as a structurally similar sentence like “Can you book John a
flight?” means something like “Can you book a flight on behalf of John?”

The probability of a particular parse T is defined as the product of the probabil-
ities of all the n rules used to expand each of the n non-terminal nodes in the parse
tree T, where each rule i can be expressed as LHSi ! RHSi:

P(T,S) =
nY

i=1

P(RHSi|LHSi) (14.2)

The resulting probability P(T,S) is both the joint probability of the parse and the
sentence and also the probability of the parse P(T). How can this be true? First, by
the definition of joint probability:

P(T,S) = P(T)P(S|T) (14.3)

But since a parse tree includes all the words of the sentence, P(S|T) is 1. Thus,

P(T,S) = P(T)P(S|T) = P(T) (14.4)

We can compute the probability of each of the trees in Fig. 14.2 by multiplying
the probabilities of each of the rules used in the derivation. For example, the proba-
bility of the left tree in Fig. 14.2a (call it Tle f t) and the right tree (Fig. 14.2b or Tright)
can be computed as follows:

P(Tle f t) = .05⇤ .20⇤ .20⇤ .20⇤ .75⇤ .30⇤ .60⇤ .10⇤ .40 = 2.2⇥10
�6

P(Tright) = .05⇤ .10⇤ .20⇤ .15⇤ .75⇤ .75⇤ .30⇤ .60⇤ .10⇤ .40 = 6.1⇥10
�7

By definition of joint probability:

But since a parse tree includes all the words of the sentence, P(S|T) is 1

14.1 • PROBABILISTIC CONTEXT-FREE GRAMMARS 3

Grammar Lexicon

S ! NP VP [.80] Det ! that [.10] | a [.30] | the [.60]
S ! Aux NP VP [.15] Noun ! book [.10] | flight [.30]
S ! VP [.05] | meal [.05] | money [.05]
NP ! Pronoun [.35] | flight [.40] | dinner [.10]
NP ! Proper-Noun [.30] Verb ! book [.30] | include [.30]
NP ! Det Nominal [.20] | prefer [.40]
NP ! Nominal [.15] Pronoun ! I [.40] | she [.05]
Nominal ! Noun [.75] | me [.15] | you [.40]
Nominal ! Nominal Noun [.20] Proper-Noun ! Houston [.60]
Nominal ! Nominal PP [.05] | NWA [.40]
VP ! Verb [.35] Aux ! does [.60] | can [.40]
VP ! Verb NP [.20] Preposition ! from [.30] | to [.30]
VP ! Verb NP PP [.10] | on [.20] | near [.15]
VP ! Verb PP [.15] | through [.05]
VP ! Verb NP NP [.05]
VP ! VP PP [.15]
PP ! Preposition NP [1.0]

Figure 14.1 A PCFG that is a probabilistic augmentation of the L1 miniature English CFG
grammar and lexicon of Fig. ??. These probabilities were made up for pedagogical purposes
and are not based on a corpus (since any real corpus would have many more rules, so the true
probabilities of each rule would be much smaller).

parse on the left means “Book a flight that serves dinner”. The nonsensical parse
on the right, however, would have to mean something like “Book a flight on behalf
of ‘the dinner”’ just as a structurally similar sentence like “Can you book John a
flight?” means something like “Can you book a flight on behalf of John?”

The probability of a particular parse T is defined as the product of the probabil-
ities of all the n rules used to expand each of the n non-terminal nodes in the parse
tree T, where each rule i can be expressed as LHSi ! RHSi:

P(T,S) =
nY

i=1

P(RHSi|LHSi) (14.2)

The resulting probability P(T,S) is both the joint probability of the parse and the
sentence and also the probability of the parse P(T). How can this be true? First, by
the definition of joint probability:

P(T,S) = P(T)P(S|T) (14.3)

But since a parse tree includes all the words of the sentence, P(S|T) is 1. Thus,

P(T,S) = P(T)P(S|T) = P(T) (14.4)

We can compute the probability of each of the trees in Fig. 14.2 by multiplying
the probabilities of each of the rules used in the derivation. For example, the proba-
bility of the left tree in Fig. 14.2a (call it Tle f t) and the right tree (Fig. 14.2b or Tright)
can be computed as follows:

P(Tle f t) = .05⇤ .20⇤ .20⇤ .20⇤ .75⇤ .30⇤ .60⇤ .10⇤ .40 = 2.2⇥10
�6

P(Tright) = .05⇤ .10⇤ .20⇤ .15⇤ .75⇤ .75⇤ .30⇤ .60⇤ .10⇤ .40 = 6.1⇥10
�7

Estimating the probabilities

CS 272: STATISTICAL NLP (WINTER 2019) 24

Problem 1
Poor independence assumptions: CFG rules impose an independence
assumption on probabilities that leads to poor modeling of structural
dependencies across the parse tree.

Problem 2
Lack of lexical conditioning: CFG rules don’t model syntactic facts about
specific words, leading to problems with subcategorization ambiguities,
preposition attachment, and coordinate structure ambiguities.

Lexicalized PCFGs

CS 272: STATISTICAL NLP (WINTER 2019) 27

Lexicalized PCFGs

CS 272: STATISTICAL NLP (WINTER 2019) 28

Lexicalizing a CFG

CS 272: STATISTICAL NLP (WINTER 2019) 29

Lexicalizing a CFG

CS 272: STATISTICAL NLP (WINTER 2019) 30

Lexicalizing a CFG

CS 272: STATISTICAL NLP (WINTER 2019) 31

Lexicalizing a CFG

CS 272: STATISTICAL NLP (WINTER 2019) 32

Lexicalizing a CFG

CS 272: STATISTICAL NLP (WINTER 2019) 33

The Parsing Problem

CS 272: STATISTICAL NLP (WINTER 2019)

Recognition

Given sentence x and grammar G,

“Proof” is a deduction, valid parse tree.
Is sentence x in the grammar? If so, prove it.

Parsing

Even with small grammars, grows exponentially!

Show one or more derivations for x in G.

34

Probabilistic CKY Algorithm

CS 272: STATISTICAL NLP (WINTER 2019)

T[i,j,A] = Probability of the best parse with root A for the span (i,j)

Base case
Rule: P(A ® word[j])

T[j-1,j,A] = P(word[j] | A)

Recursion Rule: P(A ® B C)
A

B C

(i,j)

(i,k) (k,j)

Try every position k, and every non-terminal pair:

A (j-1,j)

word[j]

T[i,j,A] = max P(B C| A) T[i,k,B] T[k,j,C]

35

Outline

CS 272: STATISTICAL NLP (WINTER 2019)

Dependency Parsing

Extensions: Probabilistic and Lexicalized

Parsing: CKY Algorithm

36

Dependencies

CS 272: STATISTICAL NLP (WINTER 2019)

Represent only the syntactic dependencies…

37

Nested Structure = Subtrees

CS 272: STATISTICAL NLP (WINTER 2019) 38

Dependency Labels

CS 272: STATISTICAL NLP (WINTER 2019) 39

Dependency Labels

CS 272: STATISTICAL NLP (WINTER 2019) 40

Dependency Trees

CS 272: STATISTICAL NLP (WINTER 2019) 41

Dependency Trees

CS 272: STATISTICAL NLP (WINTER 2019) 42

Projective vs Non-projective

CS 272: STATISTICAL NLP (WINTER 2019) 43

Projective vs Non-projective

CS 272: STATISTICAL NLP (WINTER 2019) 44

Evaluating Dependency Parses

CS 272: STATISTICAL NLP (WINTER 2019)

ROOT She saw the video lecture

0 1 2 3 4 5

Gold
1 2 She nsubj
2 0 saw root
3 5 the det
4 5 video nn
5 2 lecture dobj

Parsed
1 2 She nsubj
2 0 saw root
3 4 the det
4 5 video nsubj
5 2 lecture ccomp

ROOT She saw the video lecture

0 1 2 3 4 5

45

Evaluating Dependency Parses

CS 272: STATISTICAL NLP (WINTER 2019)

ROOT She saw the video lecture

0 1 2 3 4 5

ROOT She saw the video lecture

0 1 2 3 4 5

46

Gold
1 2 She nsubj
2 0 saw root
3 5 the det
4 5 video nn
5 2 lecture dobj

Parsed
1 2 She nsubj
2 0 saw root
3 4 the det
4 5 video nsubj
5 2 lecture ccomp

Parsing Algorithms

CS 272: STATISTICAL NLP (WINTER 2019)

Ac
cu

ra
cy

Running time

Transition-based

• Fast, greedy, linear-time
• Trained for greedy search
• Features decide what to do next
• Beam search, i.e. k-best

Graph-based

• Slower, exhaustive algorithms
• Dynamic programming, inference
• Features used to score whole trees

47

