Statistical
Constituency
Parsing

JURAFSKY AND MARTIN CHAPTER 14

Recap: CKY Algorithm

Book the flight through TWA
0 1 2 3 4

J =

5

CKY uses a two-dimensional matrix
to encode the structure of a tree.

For a sentence of length n, we will
use an (n + 1) x (n + 1) matrix.

You can think of the indexes as
pointing at the gaps between the
input words.

All constituents that can span
positions i through j of the input
will be stored in the cell [i,j]

Recap: CKY Algorithm

J
—
Book the flight through TWA Book the flight through TWA
0 1 2 3 4 5

/ - e

We only work with the upper-triangular portion of the (n + 1) x (n + 1) matrix.
Each cell [i, j] records all non-terminals that can span positions i through j of the input.

Recap: CKY Algorithm

function CKY-PARSE(words, grammar) J
—
returns table

Book the flight through TWA

for-j<from 1 to LENGTH(words) do
forall {A | A - words| j] € grammar}
table[j-1, j]<table[j-1,j] U A

/fox i<from j-2 downto O do
for k&i+1 to j-1 do

for all {A|A - BC € grammar and
/ B € tableli k] and
C € tablelk,j]}:
tableli,j]<tableli,j] U A

Recap: CKY Algorithm

function CKY-PARSE(words, grammar) J
—
returns table

Book the flight through TWA

for j¢<from 1 to LENGTH(words) do
record POS tags for word j in cell [j,j-1]

for i<from j-2 downto O do
for k&i+1 to j-1 do

find all rules A - BC, such that
B spans i-k,
C spans k-j

and then record A in cell [i,j]

Find best parse

CKY parsing record ALL possible parses into the table. How do we figure
out what the best parse is for a sentence?

| T
VP VP
Verb /NP\ Verb NP NP

Book Det Nominal

/\ Book Det Nominal Nominal

the Nominal Noun
‘ the Noun Noun

Noun flight
‘ dinner flight

dinner

Ambiguity: Which parse?

Time flies like an arrow.

Ambiguity: Which parse?

Time flies like an arrow.

Time flies like an arrow .

POS

POS

flies

VBZ

like an arrow

https://demo.allennlp.org/constituency-parsing

https://demo.allennlp.org/constituency-parsing

Ambiguity: Which parse?

Fruit flies like a banana.

Ambiguity: Which parse?

Fruit flies like a banana.

A fruit fly likes a banana.

POS

-]

A fruit fly likes a banana
NP

likes a banana

o

Ambiguity: Which parse?

Fruit flies like a banana.

A fruit fly likes a banana.

POS

-]

A fruit fly likes a banana
NP

likes a banana

o

Ambiguity: Which parse?

Fruit flies like a banana.

Fruit flies like a banana.

A\L/ Nowe A POS

Fruit flies like a banana

POS

flies

VBZ

like a banana

Formal Definition of a CFG

A context-free grammar G is defined by four parameters: N, 2, R, S

N is a set of non-terminal symbols (or variables)
° In NLP, we often use the Penn Treebank tag set

2 is set of terminal symbols
o These are the words (also sometimes called the leaf nodes of the parse tree)

R is a set of production rules, each of the form A -
°© § = Aux NP VP

> Nominal - Nominal Gerund VP (recursive)

S is the start symbol (a non-terminal)

Formal Definition of a PCFG

A PROBABILISTIC context-free grammar G is defined by four
parameters: N, 2, R, S.

R is a set of production rules, each of the form A - B [probability]
° S>> NPVP [0.8]

> S Aux NP VP [0.15]
©S>VP [0.05]

Forarule A — B C, the probability can be represented
P(A—>BC(C)
or
PA—>BC|A)
or
P(RHS | LHS)

Grammar

Lexicon

S — NPVP

S — Aux NP VP

S — VP

NP — Pronoun

NP — Proper-Noun
NP — Det Nominal
NP — Nominal
Nominal — Noun

Nominal — Nominal Noun

Nominal — Nominal PP

VP — Verb

VP — Verb NP

VP — Verb NP PP
VP — Verb PP

VP — Verb NP NP
VP — VP PP

PP — Preposition NP

Det — that [.10] | a [.30] | the [.60]
Noun — book [.10] | flight [.30]
| meal [.05] | money [.05]
| flight [.40] | dinner [.10]
Verb — book |.30] | include [.30]
| prefer [40]
Pronoun — 11[.40] | she [.05]
| me [.15] | you [.40]
Proper-Noun — Houston [.60]
| NWA [.40]
Aux — does [.60] | can [.40]
Preposition — from |.30] | to |.30]
| on [.20] | near [.15]
| through [.05]

Probabilistic CFGs

A PCFG assigns a probability to each parse tree T of a sentence S. This is
useful in disambiguation, since we can pick the most likely parse tree.

The probability of a parse T is defined as the product of the probabilities
of all the rules used to expand each of the non-terminal nodes in the
parse tree.

P(T.S) =] | P(RHS;|LHS;)
i=1

Probability of a parse

S

‘ Rules P
VP S — VP .05
/\ VP — Verb NP .20
Verb Np NP — Det Nominal .20
/\ Nominal — Nominal Noun .20
Nominal — Noun 15

Book Det Nominal
/\ Verb — book .30
the Nominal Noun Det — the 60
Noun — dinner .10
Noun flight Noun — flight 40

dinner

n

P(T,S) = [[P(RHSILHS;) = .05%.20%.20%.20%.75%.30%.60%.10%.40 = 2.2 x 10~°

1—1

Probability of a parse

S
‘ Rules P
VP S — VP 05
T~ VP — Verb NPNP .10
Verb NP NP NP — Det Nominal .20
/\ NP — Nominal 15
Nominal — Noun 75
Book Det Nominal Nominal Nominal — Noun 75
Verb — book .30
the Noun Noun Det — the .60
Noun — dinner .10
Noun — flight 40

dinner flight

P(T,S) = HP(RHS,-\LHSZ-) = .05%.10%.20%.15%.75%.75%.30%.60 % .10% .40 = 6.1 x 10’

1—1

Finding best parse

Pick the parse with the highest probability. Consider all the possible
parse trees for a given sentence S. The string of words S is called the
yield of any parse tree over S.

T(S)= argmax P(T|S)
Ts..5=yield(T)

/\ VP
Verb NP ﬂ\
/\ Verb NP NP

Book Det Nominal /\
‘ /\ Book Det Nominal Nominal

the Nominal Noun

‘ ‘ the Noun Noun
Noun flight

dinner flight

dinner

Joint Probability of T and S

n
P(T.S) = | | P(RHS/|LHS;)
i=1
By definition of joint probability:

P(T,S) = P(T)P(S|T)

But since a parse tree includes all the words of the sentence, P(S|T) is 1

P(T,S) = P(T)P(S|T) = P(T)

Estimating the probabilities

od =
ol

P(d—>p|a)

Problem 1

Poor independence assumptions: CFG rules impose an independence
assumption on probabilities that leads to poor modeling of structural
dependencies across the parse tree.

Problem 2

Lack of lexical conditioning: CFG rules don’t model syntactic facts about
specific words, leading to problems with subcategorization ambiguities,
preposition attachment, and coordinate structure ambiguities.

Lexicalized PCFGs

VP

N

VP PP
/\ /\

Verb NP 1n my pajamas

| Y
shot Det Nominal

an Noun

elephant

Lexicalized PCFGs

VP NP

ﬁ\ / ~
e ~~ - RP

VP PP :
Verb NP 1n my pajamas [, w9

shot Det Nominal

an Noun

elephant

Lexicalizing a CFG

S
NP VP
| /\
Pronoun
| Verb NP
we | /\

wash Determiner Noun

our cats

Lexicalizing a CFG

S
w'/\,nh
NP VP
. Qy\nfs
Pronoun - :
L Verb NP_.
we | OV\W*S

wash Determiner Noun
N K

our cats

Lexicalizing a CFG

NP
|

Pronoun

we

Verb

wash

VP

NP

Determiner

our

Noun

cats

Lexicalizing a CFG

\ s
S G —» NP VP

v wah P - Verd NP

»
AP VP NP » Det w

wt |
Pronoun wd Cats
| Verb N

wash Determiner | Noun

our cats

Lexicalizing a CFG

NPye
|

Pronoun,,,

we

Swash

VPwash

Verbyash

wash

N Pcats

Determinergy,

our

Nouncats

cats

The Parsing Problem

Given sentence x and grammar G,

w Is sentence x in the grammar? If so, prove it.
Recognition " - . :
Proof” is a deduction, valid parse tree.

. Show one or more derivations for x in G.
Parsing

argmax p(t |)
teTe

Even with small grammars, grows exponentially!

Probabilistic CKY Algorithm

T[i,j,A] = Probability of the best parse with root A for the span (i,j)

Rule: P(A — word][j])
T[J'l,J,A] = P(Word[J] | A)

Base case

Recursion Rule: P(A —>B(C)

Try every position k, and every non-terminal pair:

T[i,j,Al = max P(B C| A) TIi,k,B] T[k,j,C]
K

A (J_llJ)

word][j]

(i)
A

N

B C
(i,k) (k.j)

Outline

4)
Parsing: CKY Algorithm
_ J
4)
Extensions: Probabilistic and Lexicalized
_ J

Dependency Parsing

CS 272: STATISTICAL NLP (WINTER 2019)

Dependencies

Represent only the syntactic dependencies...

Swash w ﬁs\"
¢ N
e Cots
NPywe VP, ash
| J
Pronoun,, vy
| Verbwash N I:)cats
we |
wash

Determinerour Nouncats

our cats

Nested Structure = Subtrees

A

N
we wash our cats

we wash our cats who stink

e VP

we vigorously wash our cats who stink

Dependency Labels

Swash
. d)
‘\sq\ ob ;
NPwe VPuash
I—
Pronoun,,,
‘ Verbwash N F)cats
we

| i:
wash

dobj acl:relcl
PR "*"*VBP/ [PRPS and:poss\NNS/WP nsubiNvBp
— — — — — —

we wash our cats who stink

Dependency Labels

Clausal Argument Relations Description

NSUBJ Nominal subject

DOBJ Direct object

I0BJ Indirect object

CCOMP Clausal complement
XCOMP Open clausal complement
Nominal Modifier Relations Description

NMOD Nominal modifier

AMOD Adjectival modifier
NUMMOD Numeric modifier

APPOS Appositional modifier
DET Determiner

CASE Prepositions, postpositions and other case markers
Other Notable Relations Description

CONJ Conjunct

CC Coordinating conjunction

Dependency Trees

Dependency Trees

i < Ci,\);,k'»>3
/ (\ 121N

| =W b. N lorbe
f

vo o"'

- %."‘()\0. Weode d 3'\ o'\‘\, bhe ‘P;-:- 0

- (ovw\c(}e& ~ a(\’c\-‘('

- ()'(le w‘:\\,t, Vs Nown- \"Y b\)(_ (.""\Ve

Projective vs Non-projective

[det ',

f

United canceled the morning flights to Houston

fmod}

root l 1 I
Y

JetBlue canceled our flight this morning which was already late

Projective vs Non-projective

(@)
(\/\
v V % United canceled the morning flights to Houston

root | { mod ,'

dobj

det

\4

JetBlue canceled our flight this morning which was already late

Evaluating Dependency Parses

SN AN

ROOT She saw the video lecture ROOT She saw the video lecture
0] 2 3 4 5 0 1 2 3 4 5

Gold Parsed

1 2 She nsubj 1 2 She nsubj
2 0 saw root 2 0 saw root
3 5 the det 3 4 the det

4 5 video nn 4 5 video nsubj
5 2 lecture dobj 5 2 lecture ccomp

Evaluating Dependency Parses

SN AN

ROOT She saw the video lecture ROOT She saw the video lecture

o 1 2 3 4 YAS 0 1 2 34 s

1
Gold - '1_'. %b Parsed ,
1 2 She nsubj S 1 2 She nsubj
2 0 saw root 2 0 v saw roof
3 5 the det LAG 3 4 the detx
4 5 video nn ofl 4 5 video nsubj
o 2wl v x
5 2 lecture dobj ¢ -—5-/, 5 2 lecture ccomp
v x

Parsing Algorithms

Graph-based

Transition-based

* Fast, greedy, linear-time * Slower, exhaustive algorithms
* Trained for greedy search * Dynamic programming, inference
* Features decide what to do next * Features used to score whole trees

e Beam search, i.e. k-best

R 3rd-order gr
[
pest " O(n*)
W 2nd-order gr
v ‘(\’\ o
> O\ O(n?)
© J Ist-order gr
5 greedy tr
2 of o)
n
< O(n) Running time
>

