
Welcome back to 
CIS 530! 
PLEASE TYPE YOUR QUESTIONS IN THE CHAT

IF YOUR INTERNET IS TOO SLOW TO SEE THE 
VIDEO, YOU CAN FIND THE SLIDES ON THE CLASS 
WEBSITE 



New course policies
1. I’m granting everyone 10 extra late days. You can now use up to 3 

late days per HW,  quiz or project milestone.

2. I’m offering a HW option for the term project component of the 
grade. You can do 4 extra HW assignments instead of a project. 

3. I’m allowing everyone to drop their lowest scoring quiz.

4. Everyone can drop their lowest scoring homework. (You can’t drop 
project milestones).

5. You can opt to do the course pass/fail.  50% and above is passing.  



Homework Option
We are creating a set of 4 additional weekly homework assignments. 
They will have the same deadlines as the project milestones. You may 
do the homework assignments individually or in pairs. 

HW9: Classifying Depression due  – requires special data access

HW10: Neural Machine Translation

HW11: BERT

HW12: Perspectives Detection

You can do the homework individually or in pairs.  

HW will be graded based on leaderboard and reports (autograders may 
not be available). 



Project Option
The project is a team exercise, with teams of 4-6. Your project will be a 
self-designed multi-week team-based effort. Milestones:

1. Submit a formal project definition and a literature review.  (due 4/8)

2. Collect your data, write an evaluation script and a baseline. (4/15)

3. Implement a published baseline. Prepare a draft of your final project 
presentation. (4/22)

4. Finish all your extensions to the public baseline, and submit your 
final report. (4/29)

You need to declare whether you intend to do the project or homework 
option by this Wednesday using the Google form linked on Piazza.

http://computational-linguistics-class.org/term-project.html

https://docs.google.com/forms/d/e/1FAIpQLScEr5wRbbk_GdvqTW0ERNGfEsJdsjyeQPi-af74gShh5pB9Ow/viewform%3Fusp=sf_link
http://computational-linguistics-class.org/term-project.html


Office hours
Office hours are going to be held via Zoom.  TAs host a host a Zoom 
group meeting and post the link on Piazza.

We will use the chat to manage the queue. Just like you would write 
your name on the whiteboard in an in-person meeting. You should write 
this info to add yourself to the queue:

1. Your name

2. A short version of your question 

3. Whether it should be discussed publicly and privately (code help)

For private questions, the TA will add you to a breakout room. For public
ones, we’ll discuss them as a group so you can hear the answers to other 
students’ questions.



Schedule http://computational-linguistics-class.org/lectures.html#now

http://computational-linguistics-class.org/lectures.html


Reminders

HOMEWORK 7 DUE DATE IS 
DUE BY MIDNIGHT ON 3/25.

HW8 WILL BE DUE 4/1.

WASH YOUR HANDS TAKE CARE OF YOURSELF. 
MENTAL HEALTH IS 
IMPORTANT TOO.



Review: 
Constituency 
Parsing
JURAFSKY AND MARTIN CHAPTERS 12-14



Formal Definition of a PCFG
A probabilistic context-free grammar G is defined by four parameters:

N is a set of non-terminal symbols (or variables)
◦ In NLP, we often use the Penn Treebank tag set

Σ is set of terminal symbols
◦ These are the words (also sometimes called the leaf nodes of the parse tree)

R is a set of production rules, each of the form A → β [probability]
◦ S → NP VP [0.8]
◦ S → Aux NP VP [0.15]
◦ S → VP [0.05]

S is the start symbol (a non-terminal)



Treebanks as grammar

CS 272: STATISTICAL NLP (WINTER 2019)

Treebanks == data

Initially, building a treebank might seem like it would be a lot 
slower and less useful than building a grammar.

However, a treebank gives us many things
• Reusability of the labor

• Many parsers, POS taggers, etc.
• Valuable resource for linguistics

• Broad coverage
• Frequencies and distributional information
• A way to evaluate systems

[Marcus et al. 1993, Computational Linguistics]10

Mitch Marcus
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Figure 12.8 The tree corresponding to the Brown corpus sentence in the previous figure.

marks the fact that there is no syntactic subject right before the verb to wait; instead,
the subject is the earlier NP We. Again, they are both co-indexed with the index 1.

( (S (‘‘ ‘‘)

(S-TPC-2

(NP-SBJ-1 (PRP We) )

(VP (MD would)

(VP (VB have)

(S
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(PP-CLR (IN on)

(NP (DT those)(NNS assets)))))))))))))
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Figure 12.9 A sentence from the Wall Street Journal portion of the LDC Penn Treebank.
Note the use of the empty -NONE- nodes.

The Penn Treebank II and Treebank III releases added further information to
make it easier to recover the relationships between predicates and arguments. Cer-

Extracted rules

S → NP VP . DT → That JJ → full

NP → DT JJ , JJ NN JJ → cold IN → of

VP → VBD ADJP , → , NN → fire

ADJP → JJ PP JJ → empty CC → and

PP → IN NP NN → sky NN → light

NP → NN CC NN VBD → was



Rules with counts
40717 PP → IN NP
33803 S → NP-SBJ VP
22513 NP-SBJ → -NONE-
21877 NP → NP PP
20740 NP → DT NN
14153 S → NP-SBJ VP .
12922 VP → TO VP
11881 PP-LOC → IN NP
11467 NP-SBJ → PRP
11378 NP → -NONE-
11291 NP → NN
...
989 VP → VBG S
985 NP-SBJ → NN
983 PP-MNR → IN NP
983 NP-SBJ → DT
969 VP → VBN VP

100 VP → VBD PP-PRD
100 PRN → : NP :
100 NP → DT JJS
100 NP-CLR → NN
99 NP-SBJ-1 → DT NNP
98 VP → VBN NP PP-DIR
98 VP → VBD PP-TMP
98 PP-TMP → VBG NP
97 VP → VBD ADVP-TMP VP
...
10 WHNP-1 → WRB JJ
10 VP → VP CC VP PP-TMP
10 VP → VP CC VP ADVP-MNR
10 VP → VBZ S , SBAR-ADV
10 VP → VBZ S ADVP-TMP

Compute 
Probabilities using 

MLE.

12



CKY Algorithm

13

CKY Demo at http://lxmls.it.pt/2015/cky.html

http://lxmls.it.pt/2015/cky.html


Ambiguity
Ambiguity can arise because of words with multiple senses or POS tags.  
Many kinds of ambiguity are also structural.  



Attachment Ambiguity
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Grammar Lexicon

S ! NP VP Det ! that | this | the | a
S ! Aux NP VP Noun ! book | flight | meal | money
S ! VP Verb ! book | include | prefer
NP ! Pronoun Pronoun ! I | she | me
NP ! Proper-Noun Proper-Noun ! Houston | NWA
NP ! Det Nominal Aux ! does
Nominal ! Noun Preposition ! from | to | on | near | through
Nominal ! Nominal Noun
Nominal ! Nominal PP
VP ! Verb
VP ! Verb NP
VP ! Verb NP PP
VP ! Verb PP
VP ! VP PP
PP ! Preposition NP
Figure 13.1 The L1 miniature English grammar and lexicon.
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Figure 13.2 Two parse trees for an ambiguous sentence. The parse on the left corresponds to the humorous
reading in which the elephant is in the pajamas, the parse on the right corresponds to the reading in which
Captain Spaulding did the shooting in his pajamas.

Crackers is ambiguous because the phrase in my pajamas can be part of the NP
headed by elephant or a part of the verb phrase headed by shot. Figure 13.2 illus-
trates these two analyses of Marx’s line using rules from L1.

Structural ambiguity, appropriately enough, comes in many forms. Two common
kinds of ambiguity are attachment ambiguity and coordination ambiguity.

A sentence has an attachment ambiguity if a particular constituent can be at-attachment

ambiguity

tached to the parse tree at more than one place. The Groucho Marx sentence is
an example of PP-attachment ambiguity. Various kinds of adverbial phrases are
also subject to this kind of ambiguity. For instance, in the following example the
gerundive-VP flying to Paris can be part of a gerundive sentence whose subject is
the Eiffel Tower or it can be an adjunct modifying the VP headed by saw:

(13.1) We saw the Eiffel Tower flying to Paris.

Probabilities give 
us a way of 

choosing between 
possible parses.



Finding best parse 
Pick the parse with the highest probability. 

16
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Rules P Rules P
S ! VP .05 S ! VP .05
VP ! Verb NP .20 VP ! Verb NP NP .10
NP ! Det Nominal .20 NP ! Det Nominal .20
Nominal ! Nominal Noun .20 NP ! Nominal .15
Nominal ! Noun .75 Nominal ! Noun .75

Nominal ! Noun .75
Verb ! book .30 Verb ! book .30
Det ! the .60 Det ! the .60
Noun ! dinner .10 Noun ! dinner .10
Noun ! flight .40 Noun ! flight .40

Figure 14.2 Two parse trees for an ambiguous sentence. The parse on the left corresponds
to the sensible meaning “Book a flight that serves dinner”, while the parse on the right corre-
sponds to the nonsensical meaning “Book a flight on behalf of ‘the dinner’ ”.

We can see that the left tree in Fig. 14.2 has a much higher probability than the
tree on the right. Thus, this parse would correctly be chosen by a disambiguation
algorithm that selects the parse with the highest PCFG probability.

Let’s formalize this intuition that picking the parse with the highest probability
is the correct way to do disambiguation. Consider all the possible parse trees for a
given sentence S. The string of words S is called the yield of any parse tree over S.yield

Thus, out of all parse trees with a yield of S, the disambiguation algorithm picks the
parse tree that is most probable given S:

T̂ (S) = argmax
T s.t.S=yield(T )

P(T |S) (14.5)

By definition, the probability P(T |S) can be rewritten as P(T,S)/P(S), thus leading
to

T̂ (S) = argmax
T s.t.S=yield(T )

P(T,S)
P(S)

(14.6)

Since we are maximizing over all parse trees for the same sentence, P(S) will be a
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Grammar Lexicon

S ! NP VP [.80] Det ! that [.10] | a [.30] | the [.60]
S ! Aux NP VP [.15] Noun ! book [.10] | flight [.30]
S ! VP [.05] | meal [.05] | money [.05]
NP ! Pronoun [.35] | flight [.40] | dinner [.10]
NP ! Proper-Noun [.30] Verb ! book [.30] | include [.30]
NP ! Det Nominal [.20] | prefer [.40]
NP ! Nominal [.15] Pronoun ! I [.40] | she [.05]
Nominal ! Noun [.75] | me [.15] | you [.40]
Nominal ! Nominal Noun [.20] Proper-Noun ! Houston [.60]
Nominal ! Nominal PP [.05] | NWA [.40]
VP ! Verb [.35] Aux ! does [.60] | can [.40]
VP ! Verb NP [.20] Preposition ! from [.30] | to [.30]
VP ! Verb NP PP [.10] | on [.20] | near [.15]
VP ! Verb PP [.15] | through [.05]
VP ! Verb NP NP [.05]
VP ! VP PP [.15]
PP ! Preposition NP [1.0]

Figure 14.1 A PCFG that is a probabilistic augmentation of the L1 miniature English CFG
grammar and lexicon of Fig. ??. These probabilities were made up for pedagogical purposes
and are not based on a corpus (since any real corpus would have many more rules, so the true
probabilities of each rule would be much smaller).

parse on the left means “Book a flight that serves dinner”. The nonsensical parse
on the right, however, would have to mean something like “Book a flight on behalf
of ‘the dinner”’ just as a structurally similar sentence like “Can you book John a
flight?” means something like “Can you book a flight on behalf of John?”

The probability of a particular parse T is defined as the product of the probabil-
ities of all the n rules used to expand each of the n non-terminal nodes in the parse
tree T, where each rule i can be expressed as LHSi ! RHSi:

P(T,S) =
nY

i=1

P(RHSi|LHSi) (14.2)

The resulting probability P(T,S) is both the joint probability of the parse and the
sentence and also the probability of the parse P(T ). How can this be true? First, by
the definition of joint probability:

P(T,S) = P(T )P(S|T ) (14.3)

But since a parse tree includes all the words of the sentence, P(S|T ) is 1. Thus,

P(T,S) = P(T )P(S|T ) = P(T ) (14.4)

We can compute the probability of each of the trees in Fig. 14.2 by multiplying
the probabilities of each of the rules used in the derivation. For example, the proba-
bility of the left tree in Fig. 14.2a (call it Tle f t ) and the right tree (Fig. 14.2b or Tright )
can be computed as follows:

P(Tle f t) = .05⇤ .20⇤ .20⇤ .20⇤ .75⇤ .30⇤ .60⇤ .10⇤ .40 = 2.2⇥10
�6

P(Tright) = .05⇤ .10⇤ .20⇤ .15⇤ .75⇤ .75⇤ .30⇤ .60⇤ .10⇤ .40 = 6.1⇥10
�7

=

P(T,S) = 6.1 * 10-7P(T,S) = 2.2 * 10-6
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Figure 12.11 A lexicalized tree from Collins (1999).

Figure 12.11 shows an example of such a tree from Collins (1999), in which each
non-terminal is annotated with its head.

For the generation of such a tree, each CFG rule must be augmented to identify
one right-side constituent to be the head daughter. The headword for a node is
then set to the headword of its head daughter. Choosing these head daughters is
simple for textbook examples (NN is the head of NP) but is complicated and indeed
controversial for most phrases. (Should the complementizer to or the verb be the
head of an infinite verb-phrase?) Modern linguistic theories of syntax generally
include a component that defines heads (see, e.g., (Pollard and Sag, 1994)).

An alternative approach to finding a head is used in most practical computational
systems. Instead of specifying head rules in the grammar itself, heads are identified
dynamically in the context of trees for specific sentences. In other words, once
a sentence is parsed, the resulting tree is walked to decorate each node with the
appropriate head. Most current systems rely on a simple set of handwritten rules,
such as a practical one for Penn Treebank grammars given in Collins (1999) but
developed originally by Magerman (1995). For example, the rule for finding the
head of an NP is as follows (Collins, 1999, p. 238):

• If the last word is tagged POS, return last-word.
• Else search from right to left for the first child which is an NN, NNP, NNPS, NX, POS,

or JJR.
• Else search from left to right for the first child which is an NP.
• Else search from right to left for the first child which is a $, ADJP, or PRN.
• Else search from right to left for the first child which is a CD.
• Else search from right to left for the first child which is a JJ, JJS, RB or QP.
• Else return the last word

Selected other rules from this set are shown in Fig. 12.12. For example, for VP
rules of the form VP ! Y1 · · · Yn, the algorithm would start from the left of Y1 · · ·
Yn looking for the first Yi of type TO; if no TOs are found, it would search for the
first Yi of type VBD; if no VBDs are found, it would search for a VBN, and so on.
See Collins (1999) for more details.



Dependency
Parsing
JURAFSKY AND MARTIN CHAPTER 15



Dependency Grammars
Dependency grammars depict the syntactic structure of 
sentences solely in terms of the words in a sentence and an 
associated set of directed head-dependent grammatical 
relations that hold among these words.



Dependency – based Constituent– based 



Advantages of dependencies
ØDependencies don’t have nodes corresponding to phrasal 
constituents.  Instead they directly encode information that 
is often buried in phrase structure parses.

Ø Dependency grammars are better able deal with languages 
that have a relatively free word order.

Ø Dependency relations approximate semantic relationships
between words and arguments, which is useful for many 
applications
Øcoreference resolution
Ø question answering 
Ø information extraction.



Dependency Formalism
The dependency structures are directed graphs.

G = (V, A) 

where V is a set of vertices and A is a set of ordered pairs of vertices 
(or directed arcs).  Each arc points from the  head to a dependent

Directed arcs can also be labeled with the grammatical relation that 
holds between the head and  a dependent. 

Head Dependent



Dependency Trees
Other common constraints are that dependency structure must be 
connected, have a designated root node, and be acyclic or planar. 
These result in a rooted tree called a dependency tree.

A dependency tree is a digraph where:

1. There is a single designated root node that has no incoming arcs

2. Each vertex has exactly one incoming arc (except the root node)

3. There is a unique path from the root node to each vertex in V

This mean that each word in the sentence has exactly one head.

Head Dependent



Dependency Relations
In addition having directed arcs point from the head to the dependent, 
arc can be labeled with the type of grammatical function involved
between the words

• nsubj and dobj identify the subject and direct object of 
the verb cancelled

• nmod, det and case relations denote modifiers of the 
nouns flights and Houston.



Dependency Relations

CS 272: STATISTICAL NLP (WINTER 2019) 26



Dependency Relations
Relation Examples with head and dependent
NSUBJ United canceled the flight.
DOBJ United diverted the flight to Reno.
IOBJ We booked her the flight to Miami.
NMOD We took the morning flight.
AMOD Book the cheapest flight.
NUMMOD JetBlue canceled 1000 flights. 
APPOS United, a unit of UAL, matched the fares.
DET The flight was canceled.
CONJ We flew to Denver and drove to Steamboat.
CC We flew to Denver and drove to Steamboat.
CASE Book the flight through Houston.



Projective vs Non-projective

CS 272: STATISTICAL NLP (WINTER 2019) 29



Dependency Treebanks
Dependency Treebanks are typically created by the following methods:

1. Having human annotators build dependency structures directly

2. Using an automatic parser and then employing human annotators to 
correct the output

3. Automatically transforming phrase-structure treebanks into 
dependency structure treebanks

Directly annotated dependency treebanks have been often created for 
morphologically rich languages such as Czech (Prague Dependency 
Treebank), Hindi and Finnish.
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Figure 15.4 A phrase-structure tree from the Wall Street Journal component of the Penn Treebank 3.

a sequence of transitions through the space of possible configurations. The goal of
this process is to find a final configuration where all the words have been accounted
for and an appropriate dependency tree has been synthesized.

To implement such a search, we’ll define a set of transition operators, which
when applied to a configuration produce new configurations. Given this setup, we
can view the operation of a parser as a search through a space of configurations for
a sequence of transitions that leads from a start state to a desired goal state. At the
start of this process we create an initial configuration in which the stack contains the
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Figure 15.4 A phrase-structure tree from the Wall Street Journal component of the Penn Treebank 3.

a sequence of transitions through the space of possible configurations. The goal of
this process is to find a final configuration where all the words have been accounted
for and an appropriate dependency tree has been synthesized.

To implement such a search, we’ll define a set of transition operators, which
when applied to a configuration produce new configurations. Given this setup, we
can view the operation of a parser as a search through a space of configurations for
a sequence of transitions that leads from a start state to a desired goal state. At the
start of this process we create an initial configuration in which the stack contains the
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the use of head rules discussed in Chapter 12 first developed for use in lexicalized
probabilistic parsers (Magerman 1994, Collins 1999, Collins 2003). Here’s a simple
and effective algorithm from Xia and Palmer (2001).

1. Mark the head child of each node in a phrase structure, using the appropriate
head rules.

2. In the dependency structure, make the head of each non-head child depend on
the head of the head-child.

When a phrase-structure parse contains additional information in the form of
grammatical relations and function tags, as in the case of the Penn Treebank, these
tags can be used to label the edges in the resulting tree. When applied to the parse
tree in Fig. 15.4, this algorithm would produce the dependency structure in exam-
ple 15.4.

(15.4)
Vinken will join the board as a nonexecutive director Nov 29

sbj

aux

dobj

clr

tmp

nmod

case

nmod

amod num

root

The primary shortcoming of these extraction methods is that they are limited by
the information present in the original constituent trees. Among the most impor-
tant issues are the failure to integrate morphological information with the phrase-
structure trees, the inability to easily represent non-projective structures, and the
lack of internal structure to most noun-phrases, as reflected in the generally flat
rules used in most treebank grammars. For these reasons, outside of English, most
dependency treebanks are developed directly using human annotators.

15.4 Transition-Based Dependency Parsing

Our first approach to dependency parsing is motivated by a stack-based approach
called shift-reduce parsing originally developed for analyzing programming lan-shift-reduce

parsing

guages (Aho and Ullman, 1972). This classic approach is simple and elegant, em-
ploying a context-free grammar, a stack, and a list of tokens to be parsed. Input
tokens are successively shifted onto the stack and the top two elements of the stack
are matched against the right-hand side of the rules in the grammar; when a match is
found the matched elements are replaced on the stack (reduced) by the non-terminal
from the left-hand side of the rule being matched. In adapting this approach for
dependency parsing, we forgo the explicit use of a grammar and alter the reduce
operation so that instead of adding a non-terminal to a parse tree, it introduces a
dependency relation between a word and its head. More specifically, the reduce ac-
tion is replaced with two possible actions: assert a head-dependent relation between
the word at the top of the stack and the word below it, or vice versa. Figure 15.5
illustrates the basic operation of such a parser.

A key element in transition-based parsing is the notion of a configuration whichconfiguration

consists of a stack, an input buffer of words, or tokens, and a set of relations rep-
resenting a dependency tree. Given this framework, the parsing process consists of



Parsing Methods
There are two main approaches used in dependency parsers:

1. Transition-Based

2. Graph-Based

Transition-based approaches can only produce projective trees. 
Therefore any sentences with non-projective structures will contain 
errors. 

In contrast, graph-based parsing approaches can handle non-projectivity 
but are more computationally expensive.



Transition-based Parsing
Transition-based parsing systems employ a greedy stack-based 
algorithm to create dependency structures.

A key element in transition-based parsing is the notion of a 
configuration which consists of a stack, an input buffer of words and a
set of relations representing the dependency tree. 

Parsing consists of a sequence of “shift-reduce” transitions. Once all 
the words have been moved off the stack, they have each and been 
assigned a head (and an appropriate relation).  

The resulting configuration is a dependency tree. 



The parser examines the top two elements of the stack and selects an action 
based on consulting an oracle that examines the current configuration.

Transition-based Parser



Transition-based Parser
Intuition: create a dependency tree by examining the words 
in a single pass over the input, moving from left to right:

• Assign the current word as the head of some previously 
seen word,

• Assign some previously seen word as the head of the 
current word,

•Or postpone doing anything with the current word, adding 
it to the stack so that it can be processed later.



Transition-based Parser

Complexity is linear in the length of the sentence O(V) since it is based 
on a single left to right pass through the words in the sentence ➞ each 
word must be first shifted onto the stack and then reduced
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To assure that these operators are used properly we’ll need to add some pre-
conditions to their use. First, since, by definition, the ROOT node cannot have any
incoming arcs, we’ll add the restriction that the LEFTARC operator cannot be ap-
plied when ROOT is the second element of the stack. Second, both reduce operators
require two elements to be on the stack to be applied. Given these transition opera-
tors and preconditions, the specification of a transition-based parser is quite simple.
Fig. 15.6 gives the basic algorithm.

function DEPENDENCYPARSE(words) returns dependency tree

state {[root], [words], [] } ; initial configuration
while state not final

t ORACLE(state) ; choose a transition operator to apply
state APPLY(t, state) ; apply it, creating a new state

return state

Figure 15.6 A generic transition-based dependency parser

At each step, the parser consults an oracle (we’ll come back to this shortly) that
provides the correct transition operator to use given the current configuration. It then
applies that operator to the current configuration, producing a new configuration.
The process ends when all the words in the sentence have been consumed and the
ROOT node is the only element remaining on the stack.

The efficiency of transition-based parsers should be apparent from the algorithm.
The complexity is linear in the length of the sentence since it is based on a single left
to right pass through the words in the sentence. More specifically, each word must
first be shifted onto the stack and then later reduced.

Note that unlike the dynamic programming and search-based approaches dis-
cussed in Chapters 12 and 13, this approach is a straightforward greedy algorithm
— the oracle provides a single choice at each step and the parser proceeds with that
choice, no other options are explored, no backtracking is employed, and a single
parse is returned in the end.

Figure 15.7 illustrates the operation of the parser with the sequence of transitions
leading to a parse for the following example.

(15.5)
Book me the morning flight

iobj

dobj

det

nmod

root

Let’s consider the state of the configuration at Step 2, after the word me has been
pushed onto the stack.

Stack Word List Relations
[root, book, me] [the, morning, flight]

The correct operator to apply here is RIGHTARC which assigns book as the head of
me and pops me from the stack resulting in the following configuration.

Stack Word List Relations
[root, book] [the, morning, flight] (book! me)



Operators
There are three transition operators that will operate on 
the top two elements of the stack:

1. LEFTARC: Assert a head-dependent relation between the 
word at the top of the stack and the word directly 
beneath it; remove the lower word from the stack.

2. RIGHTARC: Assert a head-dependent relation between 
the second word on the stack and the word at the top; 
remove the word at the top of the stack;

3. SHIFT: Remove the word from the front of the input 
buffer and push it onto the stack.



Worked example:



Book me a morning flight
input buffer:

stack: Root

Book me a morning flight

Parser} Action: Shift

Root



Book

me a morning flight
input buffer:

stack:

Root

Book me a morning flight

Parser} Action: Shift

Root



Book

me

a morning flight
input buffer:

stack:

Root

Book me a morning flight

Parser} Action: RightArc

iobj

Root



Book
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Root
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Parser} Action: Shift

iobj

Root



Book

a

morning flight
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stack:

Root
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Parser} Action: Shift
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Book

a
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input buffer:

stack:

Root

Book me a morning flight

Parser} Action: Shift

iobj
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Book

a
morning

flight

input buffer:

stack:

Root

Book me a morning flight

Parser} Action: LeftArc

iobj nmod

Root



input buffer:

stack:

Book me a morning flight

Parser} Action: LeftArc

iobj nmod
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Book

a
flight

Root

Root



input buffer:

stack:

Book me a morning flight

Parser} Action: RightArc

iobj nmod

det
dobj

Book
flight

Root

Root



input buffer:

stack:

Book me a morning flight

Parser} Action: RightArc

iobj nmod

det
dobj

Book

Root

Root

root



input buffer:

stack:

Book me a morning flight

Parser} Action: Done

iobj nmod

det
dobj

Root

Root

root



Creating the Oracle
SOTA transition-based systems use supervised machine learning 
methods to train classifiers that play the role of the oracle, which takes 
in as input a configuration and returns as output a transition operator.

Problem: What about the training data? To train the oracle, we need 
configurations paired with transition operators, which aren’t provided 
by the Treebanks…

Solution: simulate the operation of the parser by running the algorithm 
and relying on a new training oracle to give correct transition operators 
for each successive operation. 



Graph-based Parsing
Graph-based methods for creating dependency structures search through 
the space of possible dependency trees for a tree that maximizes some 
score function:

where, the score for a tree is based on the scores of the edges that 
comprise the tree:

A common approach involves the use of maximum spanning trees (MST)

!𝑇 𝑆 = 𝑎𝑟𝑔𝑚𝑎𝑥! ∈ #! 𝑠𝑐𝑜𝑟𝑒 (𝑡, 𝑆)

𝑠𝑐𝑜𝑟𝑒 𝑡, 𝑆 = 2
$ ∈!

𝑠𝑐𝑜𝑟𝑒 (𝑒)





Training
While we can reduce the score of tree to a sum of the scores of the 
edges that comprise it, each edge score can also be reduced to a 
weighted sum of features extracted from it. 

Commonly used features include:

𝑠𝑐𝑜𝑟𝑒 𝑆, 𝑒 =2
%&'

(

𝑤%𝑓% 𝑆, 𝑒 = 𝑤 5 𝑓

• Wordforms, lemmas and POS of the headword and dependent

• Corresponding features of contexts before, after and between words

• Word embeddings

• Dependency relation type

• Direction of the relation (to the right or to the left)

• Distance from the head to the dependent



Evaluation
The common method for evaluating dependency parsers are labeled 
attachment accuracy (LAS) and unlabeled attachment accuracy 

Labeled attachment refers to the proper assignment of a word 
to its head with the correct dependency relation.

Unlabeled attachment refers to the proper assignment of a 
word to its head ONLY (ignores dependency relation)

LAS = 2/3, UAS = 5/6



Next time: Logical 
Representations 
of Sentence 
Meaning


