Welcome back to
CIS 530!

PLEASE TYPE YOUR QUESTIONS IN THE CHAT

IF YOUR INTERNET IS TOO SLOW TO SEE THE
VIDEO, YOU CAN FIND THE SLIDES ON THE CLASS

WEBSITE

1.

New course policies

I’'m granting everyone 10 extra late days. You can now use up to 3
late days per HW, quiz or project milestone.

I’'m offering a HW option for the term project component of the
grade. You can do 4 extra HW assignments instead of a project.

I’'m allowing everyone to drop their lowest scoring quiz.

Everyone can drop their lowest scoring homework. (You can’t drop
project milestones).

You can opt to do the course pass/fail. 50% and above is passing.

Homework Option

We are creating a set of 4 additional weekly homework assignments.
They will have the same deadlines as the project milestones. You may
do the homework assignments individually or in pairs.

HW9: Classifying Depression due — requires special data access
HW10: Neural Machine Translation
HW11: BERT
HW12: Perspectives Detection
You can do the homework individually or in pairs.

HW will be graded based on leaderboard and reports (autograders may
not be available).

Project Option

The project is a team exercise, with teams of 4-6. Your project will be a
self-designed multi-week team-based effort. Milestones:
1. Submit a formal project definition and a literature review. (due 4/8)

2. Collect your data, write an evaluation script and a baseline. (4/15)

3. Implement a published baseline. Prepare a draft of your final project
presentation. (4/22)

4. Finish all your extensions to the public baseline, and submit your
final report. (4/29)

You need to declare whether you intend to do the project or homework
option by this Wednesday using the Google form linked on Piazza.

http://computational-linguistics-class.org/term-project.html

https://docs.google.com/forms/d/e/1FAIpQLScEr5wRbbk_GdvqTW0ERNGfEsJdsjyeQPi-af74gShh5pB9Ow/viewform%3Fusp=sf_link
http://computational-linguistics-class.org/term-project.html

Office hours

Office hours are going to be held via Zoom. TAs host a host a Zoom
group meeting and post the link on Piazza.

We will use the chat to manage the queue. Just like you would write
your name on the whiteboard in an in-person meeting. You should write
this info to add yourself to the queue:

1. Your name
2. A short version of your question
3. Whether it should be discussed publicly and privately (code help)

For private questions, the TA will add you to a breakout room. For public
ones, we’ll discuss them as a group so you can hear the answers to other
students’ questions.

SC h e d u | e http://computational-linguistics-class.org/lectures.html#now

Mon, Mar 23,
2020

Wed, Mar 25,
2020

Wed, Mar 25,
2020

Mon, Mar 30,
2020

Mon, Mar 30,
2020

Wed, Mar 25,
2020

Fri, Mar 27, 2020

Wed, Apr 1, 2020
Wed, Apr 1, 2020

Fri, Apr 3, 2020

Wrap-up of Constituency Parsing /
Dependency Parsing [Zoom link]

Logical Representations of Sentence
Meaning [Zoom link]

HW?7 "Named Entity Recognition" due

Information Extraction [Zoom link]

Quiz due (covers Chapters 12-14)

Deadline to decide on term project versus
weekly homework option. Please specify
your preference by filling out this form.

Deadline to complete the IRB training for
HW9, if you're doing the HW option.
Please follow the instruction for obtaining
data on the HW9 page.

Semantic Role Labeling [Zoom link]

HWS8 "Learning Hypernyms" due

Withdraw Deadline

Jurafsky and Martin, Chapter 14 "Statistical Constituency Parsing"
Jurafsky and Martin, Chapter 15 "Dependency Parsing"

Dragomir Radev, Dependency Parsing

Dragomir Radeyv, Statistical Parsing

Jurafsky and Martin, Chapter 16 "Logical Representations of Sentence Meaning

Jurafsky and Martin, Chapter 18 "Information Extraction"

Jurafsky and Martin, Chapter 12 "Constituency Grammars"
Jurafsky and Martin, Chapter 13 "Constituency Parsing"
Jurafsky and Martin, Chapter 14 "Statistical Constituency Parsing

Jurafsky and Martin, Chapter 20 "Semantic Role Labeling"

http://computational-linguistics-class.org/lectures.html

Reminders

HOMEWORK 7 DUE DATE IS WASH YOUR HANDS TAKE CARE OF YOURSELF.
DUE BY MIDNIGHT ON 3/25. MENTAL HEALTH IS
HW8 WILL BE DUE 4/1. IMPORTANT TOO.

Review:
Constituency
Parsing

JURAFSKY AND MARTIN CHAPTERS 12-14

Formal Definition of a PCFG

A probabilistic context-free grammar G is defined by four parameters:

N is a set of non-terminal symbols (or variables)
° In NLP, we often use the Penn Treebank tag set

2 is set of terminal symbols
o These are the words (also sometimes called the leaf nodes of the parse tree)

R is a set of production rules, each of the form A - B [probability]
°§S—-> NPVP [0.8]

> S Aux NP VP [0.15]
©S>VP [0.05]

S is the start symbol (a non-terminal)

Treebanks as grammar

Treebanks == data

Initially, building a treebank might seem like it would be a lot
slower and less useful than building a grammar. .
Mitch Marcus
However, a treebank gives us many things
* Reusability of the labor
* Many parsers, POS taggers, etc.
* Valuable resource for linguistics
* Broad coverage
* Frequencies and distributional information
* A way to evaluate systems

[Marcus et al. 1993, Computationai Linguistics]

S

NP—SBJ%VP\.

DT JJ , JJ NN VBD ADJP-PRD
. PN
That cold , empty sky was] PP
N
Sfull IN NP

AN

of NN CC NN

fire and light

Extractedrules ||

S-> NPVP. DT - That JJ = full
NP - DTJ,JJNN JJ - cold IN - of
VP - VBD ADJP = NN - fire
ADJP - JJ PP] 2> empty CC - and
PP - IN NP NN - sky NN - light

_ NP - NN CC NN VBD - was -

Rules with counts

40717 PP - IN NP 100 VP - VBD PP-PRD

33803 S - NP-SBJ VP 100 PRN = : NP :

22513 NP-SBJ - -NONE- 100 NP > DT JIS

21877 NP -> NP PP 100 NP-CLR = NN

20740 NP - DT NN 99 NP-SBJ-1 -> DT NNP

14153 S > NP-SBJ VP . 98 VP - VBN NP PP-DIR

12922 VP > TO VP 98 VP - VBD PP-TMP

11881 PP-LOC - IN NP 98 PP-TMP -> VBG NP

11467 NP-SBJ - PRP 97 VP = VBD ADVP-TMP VP

11378 NP - -NONE- Compute
11291 NP > NN 10 WHNP-1 - WRB JJ Probabilities using
10 VP - VP CC VP PP-TMP MLE.
989 VP > VBG S 10 VP > VP CC VP ADVP-MNR

985 NP-SBJ -> NN 10 VP > VBZ S, SBAR-ADV

983 PP-MNR > IN NP 10 VP = VBZ S ADVP-TMP

983 NP-SBJ - DT
969 VP - VBN VP

CKY Algorithm

function CK'Y-PARSE(words, grammar) returns table

for j < from 1 to LENGTH(words) do
for all {A|A — words[j| € grammar}
table[j— 1, j]<table[j—1,j]UA
for i <—from j —2 downto O do
for k<—i+1toj—1do
forall {A|A — BC € grammar and B € table[i,k] and C € tablelk, j]}
tableli,j] < tableli,j] U A

CKY Demo at http://Ixmls.it.pt/2015/cky.html

http://lxmls.it.pt/2015/cky.html

Ambiguity

Ambiguity can arise because of words with multiple senses or POS tags.
Many kinds of ambiguity are also structural.

"One morning I shot an elephant in my pajamas.

How he got in
my pajamas,
T don't know."

Groucho Marx

Attachment Ambi gu |ty Probabilities give

us a way of
choosing between
S possible parses.
NP NP VP
Pronoun Verb Pronoun PP
1 shot Det Nominal Verb in my pajamas
an Nominal shot Det Nominal
Noun in my pajamas an Noun

elephant elephant

Finding best parse

Pick the parse with the highest probability.

T(S)= argmax P(T|S) = P(T,S)=]]P(RHS|LHS;)
Ts.t.S=yield(T) i—1
T s
ve \

/\ VP
Verb NP %\
/\ Verb NP NP

Book Det Nominal A
/\ Book Det Nominal Nominal

the Nominal Noun

‘ the Noun Noun

Noun flight
P(T,S) =2.2 * 10°® P(T,S) =6.1 * 10”7
dinner flight

dinner

Constituents have heads

S(dumped)

/\

NP(workers) VP(dumped)

— T

NNS(workers) VBD(dumped) NP(sacks) PP(into)

\ \ TN

workers dumped NNS(sacks) P NP(bin)

\ N

sacks into DT(a) NN(bin)

a bin

Dependency
Parsing

JURAFSKY AND MARTIN CHAPTER 15

Dependency Grammars

Dependency grammars depict the syntactic structure of
sentences solely in terms of the words in a sentence and an
associated set of directed head-dependent grammatical

relations that hold among these words.
oo

(@) (amod.
[
Y

I prefer the morning flight through Denver

Dependency — based

prefer

TN

I

flight

] T~

the morning Denver

through

Constituent— based

S
/\
NP VP
/\
Pro Verb NP
/\
I pre‘fer Det Nom
/\
tl‘ze Nom

Noun flight through Pro

morning Denver

Advantages of dependencies

»Dependencies don’t have nodes corresponding to phrasal
constituents. Instead they directly encode information that
is often buried in phrase structure parses.

» Dependency grammars are better able deal with languages
that have a relatively free word order.

» Dependency relations approximate semantic relationships
between words and arguments, which is useful for many
applications

» coreference resolution
» question answering
» information extraction.

Dependency Formalism

The dependency structures are directed graphs.
G=(V,A)

where V is a set of vertices and A is a set of ordered pairs of vertices
(or directed arcs). Each arc points from the head to a dependent

Directed arcs can also be labeled with the grammatical relation that
holds between the head and a dependent.

Dependency Trees

Other common constraints are that dependency structure must be
connected, have a designated root node, and be acyclic or planar.
These result in a rooted tree called a dependency tree.

A dependency tree is a digraph where:
1. There is a single designated root node that has no incoming arcs
2. Each vertex has exactly one incoming arc (except the root node)

3. Thereis a unique path from the root node to each vertex in V

This mean that each word in the sentence has exactly one head.

Dependency Relations

In addition having directed arcs point from the head to the dependent,
arc can be labeled with the type of grammatical function involved
between the words

United canceled the morning flights to Houston

* nsubj and dobj identify the subject and direct object of

the verb cancelled
* nmod, det and case relations denote modifiers of the

nouns flights and Houston.

Dependency Relations

Clausal Argument Relations Description

NSUBJ Nominal subject

DOBJ Direct object

I0BJ Indirect object

CCOMP Clausal complement
XCOMP Open clausal complement
Nominal Modifier Relations Description

NMOD Nominal modifier

AMOD Adjectival modifier
NUMMOD Numeric modifier

APPOS Appositional modifier
DET Determiner

CASE Prepositions, postpositions and other case markers
Other Notable Relations Description

CONJ Conjunct

CC Coordinating conjunction

Dependency Relations

Relation
NSUBJ
DOBJ
10BJ
NMOD
AMOD
NUMMOD
APPOS
DET
CONJ
CC
CASE

Examples with head and dependent

United canceled the flight.

United diverted the flight to Reno.

We booked her the flight to Miami.

We took the morning flight.

Book the cheapest flight.

JetBlue canceled 1000 flights.

United, a unit of UAL, matched the fares.
The flight was canceled.

We flew to Denver and drove to Steamboat.
We flew to Denver and drove to Steamboat.
Book the flight through Houston.

Projective vs Non-projective

(nmod]
case

United canceled the morning flights to Houston

Y

JetBlue canceled our flight this morning which was already late

Dependency Treebanks

Dependency Treebanks are typically created by the following methods:
1. Having human annotators build dependency structures directly

2. Using an automatic parser and then employing human annotators to
correct the output

3. Automatically transforming phrase-structure treebanks into
dependency structure treebanks

Directly annotated dependency treebanks have been often created for
morphologically rich languages such as Czech (Prague Dependency
Treebank), Hindi and Finnish.

S

/\

NP-SBJ VP
/\
NNP MD VP
%\
Vinken will VB PP-CLR NP-TMP
A N /\
join DT NN NNP CD
\ T \
the board as DT JJ NN Nov 29

a nonexecutive director

S(join)

/\

NP-SBJ(Vinken) VP(join)
/\
NNP MD VP(join)
%\
Vinken will VB NP(board) PP-CLR(director) NP-TMP(29)
VAN T /\
join DT NN NP(director) NNP CD
\ T \
the board as DT JJ NN Nov 29

a nonexecutive director

S(join)

/\

NP-SBJ(Vinken) VP(join)
NNP MD VP(join)
Vinken will VB NP(board) = PP-CLR(director) NP-TMP(29)
join DT NN NP(director) NNP CD
the board as DT 1] NN Nov 29
a nonexecutive director
join
Vinken will board director 29

TN

the as a nonexecutive Nov

join

%R

Vinken will board director 29

TN

the as a nonexecutive Nov

Vinken will join the board as a nonexecutive director Nov 29

Parsing Methods

There are two main approaches used in dependency parsers:
1. Transition-Based
2. Graph-Based

Transition-based approaches can only produce projective trees.
Therefore any sentences with non-projective structures will contain
errors.

In contrast, graph-based parsing approaches can handle non-projectivity
but are more computationally expensive.

Transition-based Parsing

Transition-based parsing systems employ a greedy stack-based
algorithm to create dependency structures.

A key element in transition-based parsing is the notion of a
configuration which consists of a stack, an input buffer of words and a
set of relations representing the dependency tree.

Parsing consists of a sequence of “shift-reduce” transitions. Once all
the words have been moved off the stack, they have each and been
assigned a head (and an appropriate relation).

The resulting configuration is a dependency tree.

Transition-based Parser

Input buffer
wi1 w2 wn
! Dependency
2 Parser ™ Relations
Stack | - [Oracle]
——

sSn
T —

The parser examines the top two elements of the stack and selects an action
based on consulting an oracle that examines the current configuration.

Transition-based Parser

Intuition: create a dependency tree by examining the words
in a single pass over the input, moving from left to right:

e Assign the current word as the head of some previously
seen word,

e Assign some previously seen word as the head of the
current word,

*Or postpone doing anything with the current word, adding
it to the stack so that it can be processed later.

Transition-based Parser

function DEPENDENCYPARSE(words) returns dependency tree

state <— {[root], [words], [] } ; initial configuration

while state not final
t<— ORACLE(state) ; choose a transition operator to apply
state <— APPLY (¢, state) ; apply it, creating a new state

return state

Complexity is linear in the length of the sentence O(V) since it is based
on a single left to right pass through the words in the sentence = each
word must be first shifted onto the stack and then reduced

Operators

There are three transition operators that will operate on
the top two elements of the stack:

1. LEFTARC: Assert a head-dependent relation between the
word at the top of the stack and the word directly
beneath it; remove the lower word from the stack.

2. RIGHTARC: Assert a head-dependent relation between
the second word on the stack and the word at the top;
remove the word at the top of the stack;

3. SHIFT: Remove the word from the front of the input
buffer and push it onto the stack.

Worked example:

v

Book me the morning flight

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
1 [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
3 [root, book] | [the, morning, flight] SHIFT
4 [root, book, the] | [morning, flight] SHIFT
5 [root, book, the, morning] | [flight] SHIFT
6 [root, book, the, morning, flight] | [] LEFTARC | (morning < flight)
7 [root, book, the, flight] | [] LEFTARC (the < flight)
8 [root, book, flight] | [] RIGHTARC (book — flight)
9 [root, book] | [] RIGHTARC (root — book)
10 [root] | [] Done

13T CMEW] Trace of a transition-based parse.

input buffer:

Book me a morning flight

stack: RoOt }

Action: Shift

Root Book me a morning flight

input buffer:

me a morning flight

stack: BO O k

Action: Shift

Root

Root Book me a morning flight

input buffer:

a morning flight

stack: ME

Book
Root

Action: RightArc

iobj
7 X
Root Book me a morning flight

input buffer:

a morning flight

stack: BO O k

Action: Shift

Root

iobj
7 X
Root Book me a morning flight

input buffer:

morning flight

stack: d

Book
Root

Action: Shift

iobj
7 X
Root Book me a morning flight

input buffer:

flight
stac mornlng}
Action: Shift
Book
Root
iobj
7 N

Root Book me a morning flight

input buffer:

stack: ﬂ |ght
mornin; Action: LeftArc
d
Book
Root
iobj nmod

Root Book me a morning flight

input buffer:

stack: Tl ight }

Action: LeftArc

det
o /»h

Root Book me a morning flight

d

Book
Root

input buffer:

stack: ﬂ |ght
Book

Root

Action: RightArc

Root Book me a morning flight

input buffer:

stack: Book }

Action: RightArc

Root

Root Book me a morning flight

input buffer:

stack: RO ot }

Action: Done

Root Book me a morning flight

Creating the Oracle

SOTA transition-based systems use supervised machine learning
methods to train classifiers that play the role of the oracle, which takes
in as input a configuration and returns as output a transition operator.

Problem: What about the training data? To train the oracle, we need
configurations paired with transition operators, which aren’t provided

by the Treebanks...

Solution: simulate the operation of the parser by running the algorithm
and relying on a new training oracle to give correct transition operators

for each successive operation.

Graph-based Parsing

Graph-based methods for creating dependency structures search through
the space of possible dependency trees for a tree that maximizes some
score function:

T (S) = argmax; ¢ ¢, score (t,S)

where, the score for a tree is based on the scores of the edges that
comprise the tree:

score (t,S) = Z score (e)

e et

A common approach involves the use of maximum spanning trees (MST)

function MAXSPANNINGTREE(G=(V,E), root, score) returns spanning tree

F<«I[]
T’ <]
score’ <[]
for each v € Vdo

bestInEdge <—argmax,_, ,)c g score[e]

F <+ F U bestInEdge

for each e=(u,v) € E do

score’[e] <—score[e] — score[bestInEdge]

if T=(VF) is a spanning tree then return it
else
C+acyclein F
G’ CONTRACT(G, C)
T’ < MAXSPANNINGTREE(G’, root, score’)
T <+ EXPAND(T’, C)
return 7’

function CONTRACT(G, C) returns contracted graph

function EXPAND(T, C) returns expanded graph

IUTICHENR] The Chu-Liu Edmonds algorithm for finding a maximum spanning tree in a
weighted directed graph.

Training

While we can reduce the score of tree to a sum of the scores of the
edges that comprise it, each edge score can also be reduced to a
weighted sum of features extracted from it.

N
score (S,e) = Zwifi (S,e)=w - f
i=1

Commonly used features include:

* Wordforms, lemmas and POS of the headword and dependent

* Corresponding features of contexts before, after and between words
* Word embeddings

* Dependency relation type

» Direction of the relation (to the right or to the left)

* Distance from the head to the dependent

Evaluation

The common method for evaluating dependency parsers are labeled
attachment accuracy (LAS) and unlabeled attachment accuracy

Labeled attachment refers to the proper assignment of a word
to its head with the correct dependency relation.

Unlabeled attachment refers to the proper assignment of a
word to its head ONLY (ignores dependency relation)

LAS=2/3,UAS=5/6
nmod

(root) (root)
IObJ
nmo nsub
(obj] case [M

Book me the ﬂlght through Houston Book me the flight through Houston
Reference System

Next time: Logical
Representations
of Sentence
Meaning

