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Review: Dependency 
Formalism

The dependency structures are directed graphs.

G = (V, A) 

where V is a set of vertices and A is a set of ordered pairs of 
vertices (or directed arcs).  Each arc points from the  head
to a dependent

Directed arcs can also be labeled with the grammatical 
relation that holds between the head and  a dependent. 

Head Dependent



Review: Dependency Trees
A dependency tree is a digraph where:

1. There is a single designated root node that has no incoming 
arcs

2. Each vertex has exactly one incoming arc (except the root 
node)

3. There is a unique path from the root node to each vertex in V

This mean that each word in the sentence has exactly one head.

Labeled dependency trees add labels to arcs to specify the 
grammatical relationship between the head and the dependent.

Head Dependent
relation

Relations can be things like nsubj and dobj identify the subject and direct object
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Figure 15.4 A phrase-structure tree from the Wall Street Journal component of the Penn Treebank 3.

a sequence of transitions through the space of possible configurations. The goal of
this process is to find a final configuration where all the words have been accounted
for and an appropriate dependency tree has been synthesized.

To implement such a search, we’ll define a set of transition operators, which
when applied to a configuration produce new configurations. Given this setup, we
can view the operation of a parser as a search through a space of configurations for
a sequence of transitions that leads from a start state to a desired goal state. At the
start of this process we create an initial configuration in which the stack contains the
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the use of head rules discussed in Chapter 12 first developed for use in lexicalized
probabilistic parsers (Magerman 1994, Collins 1999, Collins 2003). Here’s a simple
and effective algorithm from Xia and Palmer (2001).

1. Mark the head child of each node in a phrase structure, using the appropriate
head rules.

2. In the dependency structure, make the head of each non-head child depend on
the head of the head-child.

When a phrase-structure parse contains additional information in the form of
grammatical relations and function tags, as in the case of the Penn Treebank, these
tags can be used to label the edges in the resulting tree. When applied to the parse
tree in Fig. 15.4, this algorithm would produce the dependency structure in exam-
ple 15.4.

(15.4)
Vinken will join the board as a nonexecutive director Nov 29
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amod num
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The primary shortcoming of these extraction methods is that they are limited by
the information present in the original constituent trees. Among the most impor-
tant issues are the failure to integrate morphological information with the phrase-
structure trees, the inability to easily represent non-projective structures, and the
lack of internal structure to most noun-phrases, as reflected in the generally flat
rules used in most treebank grammars. For these reasons, outside of English, most
dependency treebanks are developed directly using human annotators.

15.4 Transition-Based Dependency Parsing

Our first approach to dependency parsing is motivated by a stack-based approach
called shift-reduce parsing originally developed for analyzing programming lan-shift-reduce

parsing

guages (Aho and Ullman, 1972). This classic approach is simple and elegant, em-
ploying a context-free grammar, a stack, and a list of tokens to be parsed. Input
tokens are successively shifted onto the stack and the top two elements of the stack
are matched against the right-hand side of the rules in the grammar; when a match is
found the matched elements are replaced on the stack (reduced) by the non-terminal
from the left-hand side of the rule being matched. In adapting this approach for
dependency parsing, we forgo the explicit use of a grammar and alter the reduce
operation so that instead of adding a non-terminal to a parse tree, it introduces a
dependency relation between a word and its head. More specifically, the reduce ac-
tion is replaced with two possible actions: assert a head-dependent relation between
the word at the top of the stack and the word below it, or vice versa. Figure 15.5
illustrates the basic operation of such a parser.

A key element in transition-based parsing is the notion of a configuration whichconfiguration

consists of a stack, an input buffer of words, or tokens, and a set of relations rep-
resenting a dependency tree. Given this framework, the parsing process consists of

Head

Dependent

Head Dependent
relation

2 styles of drawing dep. trees



Review: Transition-based 
Parsing
Transition-based parsing systems employ a greedy stack-
based algorithm to create dependency structures. 

Parsing consists of a sequence of “shift-reduce” transitions.

Once all the words have been moved off the stack, they 
have each and been assigned a head (and an appropriate 
relation).  

The resulting configuration is a dependency tree. 



Review: Operators
There are three transition operators that will operate on 
the top two elements of the stack:

1. LEFTARC: Assert a head-dependent relation between 
the word at the top of the stack and the word directly 
beneath it; remove the lower word from the stack.

2. RIGHTARC: Assert a head-dependent relation between 
the second word on the stack and the word at the top; 
remove the word at the top of the stack;

3. SHIFT: Remove the word from the front of the input 
buffer and push it onto the stack.
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Running time
The transition-based parser takes a single pass through the 
input sentence.  It places each word on the stack exactly 
ones, and pops each word exactly once.

The running time is therefore O(N), for sentence length of 
N.

The algorithm is greedy and makes its best prediction for 
which operation should be take at each time step.  

How does it decide between the 3 options?  The Oracle



Creating the Oracle
SOTA transition-based systems use supervised machine 
learning methods to train classifiers that play the role of the 
oracle, which takes in as input a configuration and returns 
as output a transition operator.

Problem: What about the training data? To train the oracle, 
we need configurations paired with transition operators, 
which aren’t provided by the Treebanks…
Solution: simulate the operation of the parser by running 
the algorithm and relying on a new training oracle to give 
correct transition operators for each successive operation. 



Training
While we can compute the score of tree as a sum of the 
scores of the edges that comprise it, each edge score can 
also be reduced to a weighted sum of features extracted 
from it. 

Commonly used features include:

𝑠𝑐𝑜𝑟𝑒 𝑆, 𝑒 =)
!"#

$

𝑤!𝑓! 𝑆, 𝑒 = 𝑤 , 𝑓

• Wordforms, lemmas and POS of the headword and dependent

• Corresponding features of contexts before, after and between words

• Word embeddings

• Dependency relation type

• Direction of the relation (to the right or to the left)

• Distance from the head to the dependent



Evaluation
The common method for evaluating dependency parsers 
are labeled attachment accuracy (LAS) and unlabeled 
attachment accuracy 
Labeled attachment refers to the proper assignment of a word 
to its head with the correct dependency relation.

Unlabeled attachment refers to the proper assignment of a 
word to its head ONLY (ignores dependency relation)

LAS = 4/6, UAS = 5/6



HW8: Learning Hypernyms

http://computational-linguistics-class.org/homework/hypernyms/hypernyms.html

http://computational-linguistics-class.org/homework/hypernyms/hypernyms.html
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Computational Semantics
So far, we have discussed one kind of meaning 
representation in the form of word vectors or word 
embeddings. 

What kind of reasoning does that representation allow us to 
draw? 

1. Words are similar to each other

2. Analogical reasoning



Analogy: Embeddings capture 
relational meaning

vector(‘king’) - vector(‘man’) + vector(‘woman’)  ≈ vector(‘queen’)

vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) ≈ vector(‘Rome’)

28



Computational Semantics
An important kind of reasoning that word embeddings don’t 
support is logical inference like this:

All animals have an ulnar artery.

Dogs are a kind of animal.

⇒
All dogs have an ulnar artery

Today we will discuss meaning representations that allow us to 
link linguistics structures (words and sentences) onto a 
representation of the state of the world, and perform inferences. 



Semantic Parsing
The process whereby meaning representations are created 
and assigned to linguistic inputs is called semantic parsing 
or semantic analysis.

Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright c� 2019. All
rights reserved. Draft of October 2, 2019.

CHAPTER

16 Logical Representations of

Sentence Meaning

ISHMAEL: Surely all this is not without meaning.
Herman Melville, Moby Dick

In this chapter we introduce the idea that the meaning of linguistic expressions can
be captured in formal structures called meaning representations. Consider tasksmeaning

representations

that require some form of semantic processing, like learning to use a new piece of
software by reading the manual, deciding what to order at a restaurant by reading
a menu, or following a recipe. Accomplishing these tasks requires representations
that link the linguistic elements to the necessary non-linguistic knowledge of the
world. Reading a menu and deciding what to order, giving advice about where to
go to dinner, following a recipe, and generating new recipes all require knowledge
about food and its preparation, what people like to eat, and what restaurants are like.
Learning to use a piece of software by reading a manual, or giving advice on using
software, requires knowledge about the software and similar apps, computers, and
users in general.

In this chapter, we assume that linguistic expressions have meaning representa-
tions that are made up of the same kind of stuff that is used to represent this kind of
everyday common-sense knowledge of the world. The process whereby such repre-
sentations are created and assigned to linguistic inputs is called semantic parsing orsemantic

parsing

semantic analysis, and the entire enterprise of designing meaning representations
and associated semantic parsers is referred to as computational semantics.computational

semantics

9e,y Having(e)^Haver(e,Speaker)^HadT hing(e,y)^Car(y)

h / have-01

c / cari / i 

arg0 arg1 (h / have-01
        arg0: (i / i)
        arg1: (c / car))

Having:
      Haver:  Speaker
      HadThing:  Car

Figure 16.1 A list of symbols, two directed graphs, and a record structure: a sampler of
meaning representations for I have a car.

Consider Fig. 16.1, which shows example meaning representations for the sen-
tence I have a car using four commonly used meaning representation languages.
The top row illustrates a sentence in First-Order Logic, covered in detail in Sec-
tion 16.3; the directed graph and its corresponding textual form is an example of
an Abstract Meaning Representation (AMR) form (Banarescu et al., 2013), and
on the right is a frame-based or slot-filler representation, discussed in Section 16.5
and again in Chapter 18.

Linguistic Expression: I have a car

Meaning representation:



Meaning Representation
A meaning representation consists of structures composed 
from a set of symbols, or representational vocabulary, 
which correspond to

1. Objects (speaker, car)

2. Properties of objects (red(car))

3. Relation among objects (owns(speaker, car) )

These describe some state of the world, which we are trying 
to represent and reason about.



Meaning Representation
Meaning representations can be viewed both as 

1. Representations of the meaning of a linguistic input, and

2. As representations of the state of affairs in the world. 

This is going to allow us to link linguistic inputs to the world 
and use our knowledge of the world to reason about
whether statements are true, or to answer questions by 
returning objects that matching variables in the question. 



Desirable Properties for 
Meaning Representations

1. Verifiability 

2. Unambiguous Representations

3. Canonical Forms

4. Make Inferences 

5. Match variables



Verifiability 
One application that we would like to use meaning 
representations for is to support question answering 
systems against a knowledge base.

Does Zahav serve vegetarian food?

We want a representation like serves(Zahav, vegetarian)
representation that could be queried against Yelp’s KB.



Unambiguous representation
I want to eat someplace that’s near Penn’s campus.



Unambiguous representation
I want to eat someplace that’s near Penn’s campus.

Our meaning representations itself cannot be ambiguous, 
so that the the system can reason over a representation 
that means either one thing or the other in order to decide 
how to answer. 

Note: Vagueness is OK!

Vagueness leaves some parts of the meaning underspecified 
but doesn’t give rise to multiple representations,



Canonical form
Distinct inputs that mean the same thing should have the 
same meaning representation.

1. Does Zahav have vegetarian dishes? 

2. Do they have vegetarian food at Zahav? 

3. Are vegetarian dishes served at Zahav? 

4. Does Zahav serve vegetarian fare? 

This is related to the task of paraphrase identification. 
Variations can be syntactic as well as lexical. 



Inference
A system needs to draw conclusions based on the meaning 
representation of inputs and its background knowledge in 
order to perform inference.

1. Does Zahav have vegetarian dishes? 

2. Can vegetarians eat at Zahav?

These are different questions, and we need to use our 
commonsense reasoning to be able to answer them.  

A system will need  to use serves(Zahav, 
vegetarian) and other background knowledge to make 
the inference.



Variables 
Finally, meaning representations must support varaible that 
are not connected to a particular object.

1. I would like to find a restaurant where I can get 
vegetarian food.

2. Which restaurants serve vegetarian food?

We will need to have a meaning representation like 
serves(x, vegetarian)

Where x can be replaced by some object in the KB that  
matches the whole proposition. 



Model-Theoretic Semantics
A model allows us to bridge the gap between a formal 
representation and the world.  The model stands in for a 
particular state of affairs in the world. 

The domain of a model is the set of objects that are being 
represented.  Each distinct thing (person, restaurant, cuisine) 
corresponds to a unique element in the domain

Properties of objects (like whether a restaurant is expensive) 
in a model correspond to sets of objects.  

Relations between object (like whether a restaurant serves a 
cuisine) are are sets of tuples. 
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Domain D = {a,b,c,d,e, f ,g,h, i, j}
Matthew, Franco, Katie and Caroline a,b,c,d
Frasca, Med, Rio e, f ,g
Italian, Mexican, Eclectic h, i, j

Properties

Noisy Noisy = {e, f ,g}
Frasca, Med, and Rio are noisy

Relations

Likes Likes = {ha, f i,hc, f i,hc,gi,hb,ei,hd, f i,hd,gi}
Matthew likes the Med
Katie likes the Med and Rio
Franco likes Frasca
Caroline likes the Med and Rio

Serves Serves = {h f , ji,hg, ii,he,hi}
Med serves eclectic
Rio serves Mexican
Frasca serves Italian

Figure 16.2 A model of the restaurant world.

presence of the tuple ha,ei. If, as it is in this case, the tuple is present in the model,
then we can conclude that Matthew likes Frasca is true; if it isn’t then we can’t.

This is all pretty straightforward—we’re using sets and operations on sets to
ground the expressions in our meaning representations. Of course, the more inter-
esting part comes when we consider more complex examples such as the following:

(16.13) Katie likes the Rio and Matthew likes the Med.
(16.14) Katie and Caroline like the same restaurants.
(16.15) Franco likes noisy, expensive restaurants.
(16.16) Not everybody likes Frasca.

Our simple scheme for grounding the meaning of representations is not adequate
for examples such as these. Plausible meaning representations for these examples
will not map directly to individual entities, properties, or relations. Instead, they
involve complications such as conjunctions, equality, quantified variables, and nega-
tions. To assess whether these statements are consistent with our model, we’ll have
to tear them apart, assess the parts, and then determine the meaning of the whole
from the meaning of the parts.

Consider the first example above. A meaning representation for this example
will include two distinct propositions expressing the individual patron’s preferences,
conjoined with some kind of implicit or explicit conjunction operator. Our model
doesn’t have a relation that encodes pairwise preferences for all of the patrons and
restaurants in our model, nor does it need to. We know from our model that Matthew
likes the Med and separately that Katie likes the Rio (that is, the tuples ha, f i and
hc,gi are members of the set denoted by the Likes relation). All we really need to
know is how to deal with the semantics of the conjunction operator. If we assume
the simplest possible semantics for the English word and, the whole statement is
true if it is the case that each of the components is true in our model. In this case,
both components are true since the appropriate tuples are present and therefore the
sentence as a whole is true.

What we’ve done with this example is provide a truth-conditional semantics
truth-

conditional

semantics

6 CHAPTER 16 • LOGICAL REPRESENTATIONS OF SENTENCE MEANING

Domain D = {a,b,c,d,e, f ,g,h, i, j}
Matthew, Franco, Katie and Caroline a,b,c,d
Frasca, Med, Rio e, f ,g
Italian, Mexican, Eclectic h, i, j

Properties

Noisy Noisy = {e, f ,g}
Frasca, Med, and Rio are noisy

Relations

Likes Likes = {ha, f i,hc, f i,hc,gi,hb,ei,hd, f i,hd,gi}
Matthew likes the Med
Katie likes the Med and Rio
Franco likes Frasca
Caroline likes the Med and Rio

Serves Serves = {h f , ji,hg, ii,he,hi}
Med serves eclectic
Rio serves Mexican
Frasca serves Italian

Figure 16.2 A model of the restaurant world.

presence of the tuple ha,ei. If, as it is in this case, the tuple is present in the model,
then we can conclude that Matthew likes Frasca is true; if it isn’t then we can’t.

This is all pretty straightforward—we’re using sets and operations on sets to
ground the expressions in our meaning representations. Of course, the more inter-
esting part comes when we consider more complex examples such as the following:

(16.13) Katie likes the Rio and Matthew likes the Med.
(16.14) Katie and Caroline like the same restaurants.
(16.15) Franco likes noisy, expensive restaurants.
(16.16) Not everybody likes Frasca.

Our simple scheme for grounding the meaning of representations is not adequate
for examples such as these. Plausible meaning representations for these examples
will not map directly to individual entities, properties, or relations. Instead, they
involve complications such as conjunctions, equality, quantified variables, and nega-
tions. To assess whether these statements are consistent with our model, we’ll have
to tear them apart, assess the parts, and then determine the meaning of the whole
from the meaning of the parts.

Consider the first example above. A meaning representation for this example
will include two distinct propositions expressing the individual patron’s preferences,
conjoined with some kind of implicit or explicit conjunction operator. Our model
doesn’t have a relation that encodes pairwise preferences for all of the patrons and
restaurants in our model, nor does it need to. We know from our model that Matthew
likes the Med and separately that Katie likes the Rio (that is, the tuples ha, f i and
hc,gi are members of the set denoted by the Likes relation). All we really need to
know is how to deal with the semantics of the conjunction operator. If we assume
the simplest possible semantics for the English word and, the whole statement is
true if it is the case that each of the components is true in our model. In this case,
both components are true since the appropriate tuples are present and therefore the
sentence as a whole is true.

What we’ve done with this example is provide a truth-conditional semantics
truth-

conditional

semantics

6 CHAPTER 16 • LOGICAL REPRESENTATIONS OF SENTENCE MEANING

Domain D = {a,b,c,d,e, f ,g,h, i, j}
Matthew, Franco, Katie and Caroline a,b,c,d
Frasca, Med, Rio e, f ,g
Italian, Mexican, Eclectic h, i, j

Properties

Noisy Noisy = {e, f ,g}
Frasca, Med, and Rio are noisy

Relations

Likes Likes = {ha, f i,hc, f i,hc,gi,hb,ei,hd, f i,hd,gi}
Matthew likes the Med
Katie likes the Med and Rio
Franco likes Frasca
Caroline likes the Med and Rio

Serves Serves = {h f , ji,hg, ii,he,hi}
Med serves eclectic
Rio serves Mexican
Frasca serves Italian

Figure 16.2 A model of the restaurant world.

presence of the tuple ha,ei. If, as it is in this case, the tuple is present in the model,
then we can conclude that Matthew likes Frasca is true; if it isn’t then we can’t.

This is all pretty straightforward—we’re using sets and operations on sets to
ground the expressions in our meaning representations. Of course, the more inter-
esting part comes when we consider more complex examples such as the following:

(16.13) Katie likes the Rio and Matthew likes the Med.
(16.14) Katie and Caroline like the same restaurants.
(16.15) Franco likes noisy, expensive restaurants.
(16.16) Not everybody likes Frasca.

Our simple scheme for grounding the meaning of representations is not adequate
for examples such as these. Plausible meaning representations for these examples
will not map directly to individual entities, properties, or relations. Instead, they
involve complications such as conjunctions, equality, quantified variables, and nega-
tions. To assess whether these statements are consistent with our model, we’ll have
to tear them apart, assess the parts, and then determine the meaning of the whole
from the meaning of the parts.

Consider the first example above. A meaning representation for this example
will include two distinct propositions expressing the individual patron’s preferences,
conjoined with some kind of implicit or explicit conjunction operator. Our model
doesn’t have a relation that encodes pairwise preferences for all of the patrons and
restaurants in our model, nor does it need to. We know from our model that Matthew
likes the Med and separately that Katie likes the Rio (that is, the tuples ha, f i and
hc,gi are members of the set denoted by the Likes relation). All we really need to
know is how to deal with the semantics of the conjunction operator. If we assume
the simplest possible semantics for the English word and, the whole statement is
true if it is the case that each of the components is true in our model. In this case,
both components are true since the appropriate tuples are present and therefore the
sentence as a whole is true.

What we’ve done with this example is provide a truth-conditional semantics
truth-

conditional

semantics



6 CHAPTER 16 • LOGICAL REPRESENTATIONS OF SENTENCE MEANING

Domain D = {a,b,c,d,e, f ,g,h, i, j}
Matthew, Franco, Katie and Caroline a,b,c,d
Frasca, Med, Rio e, f ,g
Italian, Mexican, Eclectic h, i, j

Properties

Noisy Noisy = {e, f ,g}
Frasca, Med, and Rio are noisy

Relations

Likes Likes = {ha, f i,hc, f i,hc,gi,hb,ei,hd, f i,hd,gi}
Matthew likes the Med
Katie likes the Med and Rio
Franco likes Frasca
Caroline likes the Med and Rio

Serves Serves = {h f , ji,hg, ii,he,hi}
Med serves eclectic
Rio serves Mexican
Frasca serves Italian

Figure 16.2 A model of the restaurant world.

presence of the tuple ha,ei. If, as it is in this case, the tuple is present in the model,
then we can conclude that Matthew likes Frasca is true; if it isn’t then we can’t.

This is all pretty straightforward—we’re using sets and operations on sets to
ground the expressions in our meaning representations. Of course, the more inter-
esting part comes when we consider more complex examples such as the following:

(16.13) Katie likes the Rio and Matthew likes the Med.
(16.14) Katie and Caroline like the same restaurants.
(16.15) Franco likes noisy, expensive restaurants.
(16.16) Not everybody likes Frasca.

Our simple scheme for grounding the meaning of representations is not adequate
for examples such as these. Plausible meaning representations for these examples
will not map directly to individual entities, properties, or relations. Instead, they
involve complications such as conjunctions, equality, quantified variables, and nega-
tions. To assess whether these statements are consistent with our model, we’ll have
to tear them apart, assess the parts, and then determine the meaning of the whole
from the meaning of the parts.

Consider the first example above. A meaning representation for this example
will include two distinct propositions expressing the individual patron’s preferences,
conjoined with some kind of implicit or explicit conjunction operator. Our model
doesn’t have a relation that encodes pairwise preferences for all of the patrons and
restaurants in our model, nor does it need to. We know from our model that Matthew
likes the Med and separately that Katie likes the Rio (that is, the tuples ha, f i and
hc,gi are members of the set denoted by the Likes relation). All we really need to
know is how to deal with the semantics of the conjunction operator. If we assume
the simplest possible semantics for the English word and, the whole statement is
true if it is the case that each of the components is true in our model. In this case,
both components are true since the appropriate tuples are present and therefore the
sentence as a whole is true.

What we’ve done with this example is provide a truth-conditional semantics
truth-

conditional

semantics

6 CHAPTER 16 • LOGICAL REPRESENTATIONS OF SENTENCE MEANING

Domain D = {a,b,c,d,e, f ,g,h, i, j}
Matthew, Franco, Katie and Caroline a,b,c,d
Frasca, Med, Rio e, f ,g
Italian, Mexican, Eclectic h, i, j

Properties

Noisy Noisy = {e, f ,g}
Frasca, Med, and Rio are noisy

Relations

Likes Likes = {ha, f i,hc, f i,hc,gi,hb,ei,hd, f i,hd,gi}
Matthew likes the Med
Katie likes the Med and Rio
Franco likes Frasca
Caroline likes the Med and Rio

Serves Serves = {h f , ji,hg, ii,he,hi}
Med serves eclectic
Rio serves Mexican
Frasca serves Italian

Figure 16.2 A model of the restaurant world.

presence of the tuple ha,ei. If, as it is in this case, the tuple is present in the model,
then we can conclude that Matthew likes Frasca is true; if it isn’t then we can’t.

This is all pretty straightforward—we’re using sets and operations on sets to
ground the expressions in our meaning representations. Of course, the more inter-
esting part comes when we consider more complex examples such as the following:

(16.13) Katie likes the Rio and Matthew likes the Med.
(16.14) Katie and Caroline like the same restaurants.
(16.15) Franco likes noisy, expensive restaurants.
(16.16) Not everybody likes Frasca.

Our simple scheme for grounding the meaning of representations is not adequate
for examples such as these. Plausible meaning representations for these examples
will not map directly to individual entities, properties, or relations. Instead, they
involve complications such as conjunctions, equality, quantified variables, and nega-
tions. To assess whether these statements are consistent with our model, we’ll have
to tear them apart, assess the parts, and then determine the meaning of the whole
from the meaning of the parts.

Consider the first example above. A meaning representation for this example
will include two distinct propositions expressing the individual patron’s preferences,
conjoined with some kind of implicit or explicit conjunction operator. Our model
doesn’t have a relation that encodes pairwise preferences for all of the patrons and
restaurants in our model, nor does it need to. We know from our model that Matthew
likes the Med and separately that Katie likes the Rio (that is, the tuples ha, f i and
hc,gi are members of the set denoted by the Likes relation). All we really need to
know is how to deal with the semantics of the conjunction operator. If we assume
the simplest possible semantics for the English word and, the whole statement is
true if it is the case that each of the components is true in our model. In this case,
both components are true since the appropriate tuples are present and therefore the
sentence as a whole is true.

What we’ve done with this example is provide a truth-conditional semantics
truth-

conditional

semantics
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Domain D = {a,b,c,d,e, f ,g,h, i, j}
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Frasca, Med, Rio e, f ,g
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Properties
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Relations

Likes Likes = {ha, f i,hc, f i,hc,gi,hb,ei,hd, f i,hd,gi}
Matthew likes the Med
Katie likes the Med and Rio
Franco likes Frasca
Caroline likes the Med and Rio

Serves Serves = {h f , ji,hg, ii,he,hi}
Med serves eclectic
Rio serves Mexican
Frasca serves Italian

Figure 16.2 A model of the restaurant world.
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conditional

semantics

Katie likes Rio
Katie à c
Rio à g

likes à Likes

<c,g> ∈ Likes 
so Katie likes Rio

is True



Denotation and Interpretation
A meaning representation has open-ended vocabulary of 
names for the objects, properties, and relations that make 
up the world we’re trying to represent.

Each element of the vocabulary must have a denotation in 
the model, meaning that every element corresponds to a 
fixed, well-defined part of the model. 

The function that maps from the vocabulary to the proper 
denotations in the model is an interpretation. 



More complex sentences
1. Katie likes the Rio and Matthew likes the Med. 

2. Katie and Caroline like the same restaurants. 

3. Franco likes noisy, expensive restaurants. 

4. Not everybody likes Frasca. 

In order to verify whether the meaning representations 
corresponding to these sentences are true in our model, we 
need an additional set of logical operators like and, or, not,
and quantifiers, and corresponding truth tables.

Assessing the truth conditions of complex examples still just 
involves simple set operations. 



First-Order Logic
FOL is a meaning representation language that satisfies the 
desirable qualities that we outlined. It provides a 
computational basis for verifiability and inference.

It doesn’t have many requirements other than the 
represented world consists of objects, properties of objects, 
and relations among objects.



Basics of FOL
A term in FOL can consist of a constant, a function or a 
variable.

Constants are the objects in the world model

Functions are mapping to unique objects and can be 
expressed like LocationOf(Zahav)

Variables let us make assertions and draw inferences about 
objects without referring to a named object.



Relations
Predicates are symbols that name the relations that hold 
among a fixed number of objects.

A FOL representation for Zahav serves vegetarian food 
might look like the following formula:

Serves(Zahav, Vegetarian)

Predicates can have different number of arguments so the 
formula for Zahav is a restaurant 

Restaurant(Zahav)



Logical Connectives
We can conjoin formula with logical connectives like and 
(∧), or (∨), not (¬), and implies (⇒)
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relations out in the external world being modeled. We can accomplish this by em-
ploying the model-theoretic approach introduced in Section 16.2. Recall that this
approach employs simple set-theoretic notions to provide a truth-conditional map-
ping from the expressions in a meaning representation to the state of affairs being
modeled. We can apply this approach to FOL by going through all the elements in
Fig. 16.3 on page 7 and specifying how each should be accounted for.

We can start by asserting that the objects in our world, FOL terms, denote ele-
ments in a domain, and asserting that atomic formulas are captured either as sets of
domain elements for properties, or as sets of tuples of elements for relations. As an
example, consider the following:

(16.34) Centro is near Bacaro.

Capturing the meaning of this example in FOL involves identifying the Terms
and Predicates that correspond to the various grammatical elements in the sentence
and creating logical formulas that capture the relations implied by the words and
syntax of the sentence. For this example, such an effort might yield something like
the following:

Near(Centro,Bacaro) (16.35)

The meaning of this logical formula is based on whether the domain elements de-
noted by the terms Centro and Bacaro are contained among the tuples denoted by
the relation denoted by the predicate Near in the current model.

The interpretation of formulas involving logical connectives is based on the
meanings of the components in the formulas combined with the meanings of the
connectives they contain. Figure 16.4 gives interpretations for each of the logical
operators shown in Fig. 16.3.

P Q ¬ P P ^ Q P _ Q P =) Q
False False True False False True
False True True False True True
True False False False True False
True True False True True True

Figure 16.4 Truth table giving the semantics of the various logical connectives.

The semantics of the ^ (and) and ¬ (not) operators are fairly straightforward,
and are correlated with at least some of the senses of the corresponding English
terms. However, it is worth pointing out that the _ (or) operator is not disjunctive
in the same way that the corresponding English word is, and that the =) (im-
plies) operator is only loosely based on any common-sense notions of implication
or causation.

The final bit we need to address involves variables and quantifiers. Recall that
there are no variables in our set-based models, only elements of the domain and
relations that hold among them. We can provide a model-based account for formulas
with variables by employing the notion of a substitution introduced earlier on page
9. Formulas involving 9 are true if a substitution of terms for variables results in
a formula that is true in the model. Formulas involving 8 must be true under all
possible substitutions.

16.3.5 Inference

A meaning representation language must support inference to add valid new propo-
sitions to a knowledge base or to determine the truth of propositions not explicitly
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Each one has a truth table:



Quantifiers and Variables
There are two quantifiers in FOL: 

1. ∃ – There exists
2. ∀ – For all
For an indefinite noun phrase like
a restaurant that serves Mexican food near Penn
We use the existential quantifier and a variable.

∃x Restaurant(x) ∧ Serves(x,MexicanFood) ∧
Near((LocationOf(x),LocationOf(Penn)) 



Quantifiers and Variables
All restaurants in Philly are closed.

∀xRestaurant(x) ∧ Is((LocationOf(x),
Philadelphia) 
⇒ Closed(x,) 


