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Events and their Participants
A purchasing event and its participants can be described by a wide 
variety of surface forms. 

1. XYZ corporation bought the stock.

2. They sold the stock to XYZ corporation.

3. The stock was bought by XYZ corporation.

4. The purchase of the stock by XYZ corporation... 

5. The stock purchase by XYZ corporation... 

Commonality: there was a purchase event, the participants were XYZ 
Corp and some amount of stock, and XYZ Corp was the buyer.

Semantic Role Labels give a shallow semantic representation of the 
event and its arguments. 



Semantic Roles
Last time we discussed neo-Davidsonian event representations.

Sasha broke the window

∃e, x, y Breaking(e) ∧ Breaker(e, Sasha) ∧BrokenThing(e,y)∧Window(y) 

Pat opened the door.

∃e,x,y Opening(e)∧Opener(e,Pat) ∧OpenedThing(e,y)∧Door(y) 

The semantic role of the subject of the break is Breaker

The semantic of the subject of the open is Opener

These deep roles are specific to each event. 



Thematic Roles
Breakers and Openers have something in common. They are both 
volitional actors, usually animate, and they have a direct causal 
responsibility for their events.

Thematic roles are a way to capture this semantic commonality 
between these roles.  In this case, both Breakers and Openers fill the 
thematic role of AGENT.

AGENT is the thematic role that represents an abstract idea such as 
volitional causation.

BrokenThing and OpenedThing, are both prototypically inanimate 
objects that are affected in some way by the action.  The semantic role 
for participant most directly affected by an event is THEME ;



Thematic Roles
Thematic Role Definition 

AGENT The volitional causer of an event
EXPERIENCER The experiencer of an event
FORCE The non-volitional causer of the event
THEME The participant most directly affected by an event 
RESULT The end product of an event
CONTENT The proposition or content of a propositional event
INSTRUMENT An instrument used in an event
BENFICIARY The beneficiary of an event
SOURCE The origin of the object of a transfer event
GOAL The destination of an object of a transfer event



Thematic Roles
Thematic Role Definition 

AGENT The player kicked the ball.
EXPERIENCER Dan has a cough and a fever.
FORCE The coronavirus spread rapidly through the country
THEME The wind blows debris from the street into our yard
RESULT The city implemented a stay-at-home policy for non-

essential personnel

CONTENT Chris asked “You met Rebecca at a supermarket?”
INSTRUMENT He poached catfish, stunning them with a shocking 

device…
BENFICIARY Joe makes hotel reservations for his boss.
SOURCE I flew in from Boston.
GOAL I drove to Portland.



Verb Alternation
Semantic roles act as a shallow meaning representation that allow 
systems make simple inferences that aren’t possible from the surface 
string of words, or from the parse tree. 

Arguments for verbs alternate in their positions, which makes pure 
surface analysis difficult. 



Problems with Thematic Roles
Analysis of thematic roles should be useful for handling verb 
alternation.  However, there is no single, standard set of thematic roles.  

And it’s quite difficult to come up with a formal definition for things like 
AGENT, THEME, or INSTRUMENT. 

For example, there are two kinds of INSTRUMENTS, intermediary 
instruments that can appear as subjects and enabling instruments that 
cannot:

1. The cook opened the jar with the new gadget. 
The new gadget opened the jar. 

2. Shelly ate the sliced banana with a fork. 
*The fork ate the sliced banana. 

Different theories of thematic roles treat these differently, which causes 
fragmentation across theories. 



Generalized Semantic Roles
Instead of creating a more fine-grained inventory of Thematic Roles, 
research in NLP has shifted in the direction of coarser roles.  

You may see terms like PROTO-AGENT and PROTO-PATIENT, which are 
generalized roles that express roughly agent-like and roughly patient-
like meanings.   These meanings are defined a set of heuristics.

A second direction that NLP goes in is to define semantic roles that are 
specific to each verb, or to a group of semantically related verbs or 
nouns. 

Lexical resources that make use of this second direction are PropBank
and FrameNet.



PropBank, is a resource of Penn TreeBank
sentences annotated with semantic roles.  It 
was created by Martha Palmer at UPenn.

Because defining universal thematic roles is 
difficult, PropBank defines semantic roles for 
each verb sense. 

Each verb has a specific set of roles, given by 
numbers: Arg0, Arg1, Arg2. 

In general, Arg0 represents the PROTO-
AGENT, and Arg1, the PROTO-PATIENT. 

PropBank

Martha Palmer



PropBank Frame File
Agree.01

Arg0: Agreer
Arg1: Proposition
Arg2: Other entity agreeing 

Example 1: 
[Arg0 The group] agreed [Arg1 it wouldn’t make an offer]. 

Example 2: [ArgM-TMP Usually] [Arg0 Chris] agrees [Arg2 with 
Ellie] [Arg1 on everything]. 

Glosses to be read by humans



PropBank Frame File
Increase.01 “go up incrementally” 

Arg0: Causer of increase
Arg1: Thing increasing
Arg2: Amount increased by
Arg3: Start point
Arg4: End point

Example 1: [Arg0 Big Fruit Co. ] increased [Arg1 the price of 
bananas].
Example 2: [Arg1 The price of bananas] was increased again [Arg0 
by Big Fruit Co. ]
Example 3: [Arg1 The price of bananas] increased [Arg2 5% ].



ArgMs
PropBank also has a number of non-numbered arguments called 
ArgMs, which represent modification meanings. These are stable 
across predicates, so aren’t listed with each frame file
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The PropBank semantic roles can be useful in recovering shallow semantic in-
formation about verbal arguments. Consider the verb increase:
(20.13) increase.01 “go up incrementally”

Arg0: causer of increase
Arg1: thing increasing
Arg2: amount increased by, EXT, or MNR
Arg3: start point
Arg4: end point

A PropBank semantic role labeling would allow us to infer the commonality in
the event structures of the following three examples, that is, that in each case Big
Fruit Co. is the AGENT and the price of bananas is the THEME, despite the differing
surface forms.
(20.14) [Arg0 Big Fruit Co. ] increased [Arg1 the price of bananas].
(20.15) [Arg1 The price of bananas] was increased again [Arg0 by Big Fruit Co. ]
(20.16) [Arg1 The price of bananas] increased [Arg2 5%].

PropBank also has a number of non-numbered arguments called ArgMs, (ArgM-
TMP, ArgM-LOC, etc.) which represent modification or adjunct meanings. These
are relatively stable across predicates, so aren’t listed with each frame file. Data
labeled with these modifiers can be helpful in training systems to detect temporal,
location, or directional modification across predicates. Some of the ArgM’s include:

TMP when? yesterday evening, now
LOC where? at the museum, in San Francisco
DIR where to/from? down, to Bangkok
MNR how? clearly, with much enthusiasm
PRP/CAU why? because ... , in response to the ruling
REC themselves, each other
ADV miscellaneous
PRD secondary predication ...ate the meat raw

While PropBank focuses on verbs, a related project, NomBank (Meyers et al.,NomBank
2004) adds annotations to noun predicates. For example the noun agreement in
Apple’s agreement with IBM would be labeled with Apple as the Arg0 and IBM as
the Arg2. This allows semantic role labelers to assign labels to arguments of both
verbal and nominal predicates.

20.5 FrameNet

While making inferences about the semantic commonalities across different sen-
tences with increase is useful, it would be even more useful if we could make such
inferences in many more situations, across different verbs, and also between verbs
and nouns. For example, we’d like to extract the similarity among these three sen-
tences:
(20.17) [Arg1 The price of bananas] increased [Arg2 5%].
(20.18) [Arg1 The price of bananas] rose [Arg2 5%].
(20.19) There has been a [Arg2 5%] rise [Arg1 in the price of bananas].

Note that the second example uses the different verb rise, and the third example
uses the noun rather than the verb rise. We’d like a system to recognize that the



FrameNet
In order to make semantic inferences about price increase events, we 
want to make the connection across many different verbs, not just the 
verb increase. 

Example 1: [Arg1 The price of bananas] increased [Arg2 5% ].
Example 2: [Arg1 The price of bananas] rose [Arg2 5% ].
Example 3: There has been a [Arg2 5% ] rise in [Arg1 the price of 
bananas] 

FrameNet is another Semantic Role Labeling project that attempts to 
address just these kinds of problems. 

PropBank labels roles specific to an individual verb, and FrameNet
labels roles are specific to a frame.



Frames
What is a frame? Consider the following set of words: 

reservation, flight, travel, buy, price, cost, fare, rates, plane 

They form coherent chunk of common-sense background information 
concerning air travel.  The background knowledge that unites these 
words a frame.  

The idea that groups of words are defined with respect to some back-
ground information is widespread in AI and cognitive science.  Similar to 
the notion of a script that we saw before. 
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Core Roles
ATTRIBUTE The ATTRIBUTE is a scalar property that the ITEM possesses.
DIFFERENCE The distance by which an ITEM changes its position on the scale.
FINAL STATE A description that presents the ITEM’s state after the change in the ATTRIBUTE’s

value as an independent predication.
FINAL VALUE The position on the scale where the ITEM ends up.
INITIAL STATE A description that presents the ITEM’s state before the change in the AT-

TRIBUTE’s value as an independent predication.
INITIAL VALUE The initial position on the scale from which the ITEM moves away.
ITEM The entity that has a position on the scale.
VALUE RANGE A portion of the scale, typically identified by its end points, along which the

values of the ATTRIBUTE fluctuate.
Some Non-Core Roles

DURATION The length of time over which the change takes place.
SPEED The rate of change of the VALUE.
GROUP The GROUP in which an ITEM changes the value of an

ATTRIBUTE in a specified way.
Figure 20.3 The frame elements in the change position on a scale frame from the FrameNet Labelers
Guide (Ruppenhofer et al., 2016).

VERBS: dwindle move soar escalation shift
advance edge mushroom swell explosion tumble
climb explode plummet swing fall
decline fall reach triple fluctuation ADVERBS:
decrease fluctuate rise tumble gain increasingly
diminish gain rocket growth
dip grow shift NOUNS: hike
double increase skyrocket decline increase
drop jump slide decrease rise

FrameNet also codes relationships between frames, allowing frames to inherit
from each other, or representing relations between frames like causation (and gen-
eralizations among frame elements in different frames can be representing by inher-
itance as well). Thus, there is a Cause change of position on a scale frame that is
linked to the Change of position on a scale frame by the cause relation, but that
adds an AGENT role and is used for causative examples such as the following:

(20.26) [AGENT They] raised [ITEM the price of their soda] [DIFFERENCE by 2%].

Together, these two frames would allow an understanding system to extract the
common event semantics of all the verbal and nominal causative and non-causative
usages.

FrameNets have also been developed for many other languages including Span-
ish, German, Japanese, Portuguese, Italian, and Chinese.

20.6 Semantic Role Labeling

Semantic role labeling (sometimes shortened as SRL) is the task of automaticallysemantic role
labeling

finding the semantic roles of each argument of each predicate in a sentence. Cur-
rent approaches to semantic role labeling are based on supervised machine learning,
often using the FrameNet and PropBank resources to specify what counts as a pred-
icate, define the set of roles used in the task, and provide training and test sets.

Frame: Change position on a scale 



Lexical Units
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Together, these two frames would allow an understanding system to extract the
common event semantics of all the verbal and nominal causative and non-causative
usages.

FrameNets have also been developed for many other languages including Span-
ish, German, Japanese, Portuguese, Italian, and Chinese.

20.6 Semantic Role Labeling

Semantic role labeling (sometimes shortened as SRL) is the task of automaticallysemantic role
labeling

finding the semantic roles of each argument of each predicate in a sentence. Cur-
rent approaches to semantic role labeling are based on supervised machine learning,
often using the FrameNet and PropBank resources to specify what counts as a pred-
icate, define the set of roles used in the task, and provide training and test sets.

Lexical Units that trigger the change position on a scale frame
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Abstract
We increase the lexical coverage of
FrameNet through automatic paraphras-
ing. We use crowdsourcing to manually
filter out bad paraphrases in order to en-
sure a high-precision resource. Our ex-
panded FrameNet contains an additional
22K lexical units, a 3-fold increase over
the current FrameNet, and achieves 40%
better coverage when evaluated in a prac-
tical setting on New York Times data.

1 Introduction
Frame semantics describes a word in relation to
real-world events, entities, and activities. Frame
semantic analysis can improve natural language
understanding (Fillmore and Baker, 2001), and
has been applied to tasks like question answering
(Shen and Lapata, 2007) and recognizing textual
entailment (Burchardt and Frank, 2006; Aharon
et al., 2010). FrameNet (Fillmore, 1982; Baker
et al., 1998) is a widely-used lexical-semantic re-
source embodying frame semantics. It contains
close to 1,000 manually defined frames, i.e. rep-
resentations of concepts and their semantic prop-
erties, covering a wide array of concepts from Ex-
pensiveness to Obviousness.

Frames in FrameNet are characterized by a set
of semantic roles and a set of lexical units (LUs),
which are word/POS pairs that “evoke” the frame.
For example, the following sentence contains a
mention (i.e. target) of the Obviousness frame: In
late July, it was barely visible to the unaided eye.
This particular target instantiates several semantic
roles of the Obviousness frame, including a Phe-
nomenon (it) and a Perceiver (the unaided eye).
Here, the LU visible.a evokes the frame. In
total, the Obviousness frame has 13 LUs including
clarity.n, obvious.a, and show.v.

1well received a rating of 3.67 as a paraphrase of clearly
in the context the intention to do so is clearly present.

accurate, ambiguous, apparent, apparently, audible,
axiomatic, blatant, blatantly, blurred, blurry, cer-
tainly, clarify, clarity, clear, clearly, confused, con-
fusing, conspicuous, crystal-clear, dark, definite,
definitely, demonstrably, discernible, distinct, evi-
dent, evidently, explicit, explicitly, flagrant, fuzzy,
glaring, imprecise, inaccurate, lucid, manifest, man-
ifestly, markedly, naturally, notable, noticeable,
obscure, observable, obvious, obviously, opaque,
openly, overt, patently, perceptible, plain, precise,
prominent, self-evident, show, show up, significantly,
soberly, specific, straightforward, strong, sure, tan-
gible, transparent, unambiguous, unambiguously,
uncertain, unclear, undoubtedly, unequivocal, un-
equivocally, unspecific, vague, viewable, visibility,
visible, visibly, visual, vividly, well,1 woolly

Table 1: 81 LUs invoking the Obviousness frame according
to the new FrameNet+. New LUs (bold) have been added us-
ing the method of paraphrasing and human-vetting described
in Section 4.

The semantic information in FrameNet (FN)
is broadly useful for problems such as entail-
ment (Ellsworth and Janin, 2007; Aharon et al.,
2010) and knowledge base population (Mohit and
Narayanan, 2003; Christensen et al., 2010; Gre-
gory et al., 2011), and is of general enough inter-
est to language understanding that substantial ef-
fort has focused on building parsers to map nat-
ural language onto FrameNet frames (Gildea and
Jurafsky, 2002; Das and Smith, 2012). In practice,
however, FrameNet’s usefulness is limited by its
size. FN was built entirely manually by linguistic
experts. As a result, despite many years of work,
most of the words that one confronts in naturally
occurring text do not appear at all in FN. For ex-
ample, the word blatant is likely to evoke the Ob-
viousness frame, but is not present in FN’s list of
LUs (Table 1). In fact, out of the targets we sample
in this work (described in Section 4), fewer than
50% could be mapped to a correct frame using the
LUs in FrameNet. This finding is consistent with
what has been reported by Palmer and Sporleder
(2010). Such low lexical coverage prevents FN
from applying to many real-world applications.



Semantic Role Labeling 
SRL is the task of automatically finding the semantic roles of each 
argument of each predicate in a sentence. 

Most state-of-the-art approaches to SRL use supervised machine 
learning, with FrameNet and PropBank providing training and test 
sets and defining what counts as a predicate and what the roles 
are.



Primitive Decomposition of 
Predicates 
One way of thinking about semantic is that they help us define the roles 
that arguments play in a decompositional way, based on finite lists of 
thematic roles.

1. Jim killed his philodendron.
Jim did something to cause his philodendron to become not alive.

KILL(x,y) ⇔ CAUSE(x, BECOME(NOT(ALIVE(y)))) 

2. John opened the door. ⇒ CAUSE(John, BECOME(OPEN(door))) 

3. The door opened. ⇒ BECOME(OPEN(door))

The door is open. ⇒ OPEN(door) 



Conceptual dependency 
primitives 
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break down these predicates as well. One such approach to verbal predicate de-
composition that played a role in early natural language understanding systems is
conceptual dependency (CD), a set of ten primitive predicates, shown in Fig. 20.8.conceptual

dependency

Primitive Definition
ATRANS The abstract transfer of possession or control from one entity to

another
PTRANS The physical transfer of an object from one location to another
MTRANS The transfer of mental concepts between entities or within an

entity
MBUILD The creation of new information within an entity
PROPEL The application of physical force to move an object
MOVE The integral movement of a body part by an animal
INGEST The taking in of a substance by an animal
EXPEL The expulsion of something from an animal
SPEAK The action of producing a sound
ATTEND The action of focusing a sense organ

Figure 20.8 A set of conceptual dependency primitives.

Below is an example sentence along with its CD representation. The verb brought
is translated into the two primitives ATRANS and PTRANS to indicate that the waiter
both physically conveyed the check to Mary and passed control of it to her. Note
that CD also associates a fixed set of thematic roles with each primitive to represent
the various participants in the action.

(20.47) The waiter brought Mary the check.

9x,y Atrans(x)^Actor(x,Waiter)^Ob ject(x,Check)^To(x,Mary)
^Ptrans(y)^Actor(y,Waiter)^Ob ject(y,Check)^To(y,Mary)

20.9 Summary

• Semantic roles are abstract models of the role an argument plays in the event
described by the predicate.

• Thematic roles are a model of semantic roles based on a single finite list of
roles. Other semantic role models include per-verb semantic role lists and
proto-agent/proto-patient, both of which are implemented in PropBank,
and per-frame role lists, implemented in FrameNet.

• Semantic role labeling is the task of assigning semantic role labels to the
constituents of a sentence. The task is generally treated as a supervised ma-
chine learning task, with models trained on PropBank or FrameNet. Algo-
rithms generally start by parsing a sentence and then automatically tag each
parse tree node with a semantic role. Neural models map straight from words
end-to-end.

• Semantic selectional restrictions allow words (particularly predicates) to post
constraints on the semantic properties of their argument words. Selectional



Neo-Davidsonian Event with 
Primatives
The waiter brought Mary the check. 

∃x,y Atrans(x)∧Actor(x,Waiter)∧Object(x,Check)∧To(x,Mary) 
∧Ptrans(y)∧Actor(y,Waiter)∧Object(y,Check)∧To(y,Mary) 



http://decomp.io



Conclusions
Semantic roles are abstract models of the role an argument plays in the 
event described by the predicate. 

Thematic roles are a model of semantic roles based on a single finite list 
of roles. 

Per-verb semantic role lists and proto-agent/proto-patient, are 
implemented in PropBank and FrameNet. 

Semantic role labeling is the task of assigning semantic role labels to the 
constituents of a sentence. 

Cool new research directions in finding event primatives.



Encoder-Decoder 
Models
JURAFSKY AND MARTIN CHAPTER 10



Review: Recurrent Neural 
Networks (RNNs)
RNNs can be used for language modeling and sequence labeling.  
Transduction is the general process of taking in an input sequence and 
transforming it into output sequences in a one-to-one fashion.   
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Figure 9.7 Autoregressive generation with an RNN-based neural language model.

task is part-of-speech tagging, discussed in detail in Chapter 8. In an RNN approach
to POS tagging, inputs are word embeddings and the outputs are tag probabilities
generated by a softmax layer over the tagset, as illustrated in Fig. 9.8.

In this figure, the inputs at each time step are pre-trained word embeddings cor-
responding to the input tokens. The RNN block is an abstraction that represents
an unrolled simple recurrent network consisting of an input layer, hidden layer, and
output layer at each time step, as well as the shared U , V and W weight matrices that
comprise the network. The outputs of the network at each time step represent the
distribution over the POS tagset generated by a softmax layer.

To generate a tag sequence for a given input, we can run forward inference over
the input sequence and select the most likely tag from the softmax at each step. Since
we’re using a softmax layer to generate the probability distribution over the output

Janet will back

RNN

the bill

Figure 9.8 Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over
the part-of-speech tags as output at each time step.



Review: Recurrent Neural 
Networks (RNNs)
A recurrent neural network (RNN) is any network that contains a cycle 
within its network. 

In such networks the value of a unit can be dependent on earlier 
outputs as an input. 

RNNs have proven extremely effective when applied to NLP.9.1 • SIMPLE RECURRENT NEURAL NETWORKS 3

ht

yt

xt

Figure 9.2 Simple recurrent neural network after Elman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden
layer depends on the current input as well as the activation value of the hidden layer from the
previous time step.

tion value for a layer of hidden units. This hidden layer is, in turn, used to calculate
a corresponding output, yt . In a departure from our earlier window-based approach,
sequences are processed by presenting one element at a time to the network. The
key difference from a feedforward network lies in the recurrent link shown in the
figure with the dashed line. This link augments the input to the computation at the
hidden layer with the activation value of the hidden layer from the preceding point

in time.
The hidden layer from the previous time step provides a form of memory, or

context, that encodes earlier processing and informs the decisions to be made at
later points in time. Critically, this architecture does not impose a fixed-length limit
on this prior context; the context embodied in the previous hidden layer includes
information extending back to the beginning of the sequence.

Adding this temporal dimension may make RNNs appear to be more exotic than
non-recurrent architectures. But in reality, they’re not all that different. Given an
input vector and the values for the hidden layer from the previous time step, we’re
still performing the standard feedforward calculation. To see this, consider Fig. 9.3
which clarifies the nature of the recurrence and how it factors into the computation
at the hidden layer. The most significant change lies in the new set of weights,
U , that connect the hidden layer from the previous time step to the current hidden
layer. These weights determine how the network should make use of past context in
calculating the output for the current input. As with the other weights in the network,
these connections are trained via backpropagation.

9.1.1 Inference in Simple RNNs
Forward inference (mapping a sequence of inputs to a sequence of outputs) in an
RNN is nearly identical to what we’ve already seen with feedforward networks. To
compute an output yt for an input xt , we need the activation value for the hidden
layer ht . To calculate this, we multiply the input xt with the weight matrix W , and
the hidden layer from the previous time step ht�1 with the weight matrix U . We
add these values together and pass them through a suitable activation function, g,
to arrive at the activation value for the current hidden layer, ht . Once we have the
values for the hidden layer, we proceed with the usual computation to generate the
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Figure 9.5 A simple recurrent neural network shown unrolled in time. Network layers are copied for each
time step, while the weights U , V and W are shared in common across all time steps.

weights from the input layer to the hidden layer, U , the weights from the previous
hidden layer to the current hidden layer, and finally V , the weights from the hidden
layer to the output layer.

Before going on, let’s first review some of the notation that we introduced in
Chapter 7. Assuming a network with an input layer x and a non-linear activation
function g, a

[i] refers to the activation value from a layer i, which is the result of
applying g to z

[i], the weighted sum of the inputs to that layer.
Fig. 9.5 illustrates two considerations that we didn’t have to worry about with

backpropagation in feedforward networks. First, to compute the loss function for
the output at time t we need the hidden layer from time t � 1. Second, the hidden
layer at time t influences both the output at time t and the hidden layer at time t +1
(and hence the output and loss at t + 1). It follows from this that to assess the error
accruing to ht , we’ll need to know its influence on both the current output as well as

the ones that follow.
Consider the situation where we are examining an input/output pair at time 2 as

shown in Fig. 9.6. What do we need to compute the gradients required to update
the weights U , V , and W here? Let’s start by reviewing how we compute the gra-
dients required to update V since this computation is unchanged from feedforward
networks. To review from Chapter 7, we need to compute the derivative of the loss
function L with respect to the weights V . However, since the loss is not expressed
directly in terms of the weights, we apply the chain rule to get there indirectly.

∂L

∂V
=

∂L

∂a

∂a

∂ z

∂ z

∂V

The first term on the right is the derivative of the loss function with respect to
the network output, a. The second term is the derivative of the network output with
respect to the intermediate network activation z, which is a function of the activation

time



Review: Recurrent Neural 
Language Models
Unlike n-gram LMs and feedforward networks with sliding windows, 
RNN LMs don’t use a fixed size context window.

They predict the next word in a sequence by using the current word and 
the previous hidden state as input.

The hidden state embodies information about all of the preceding 
words all the way back to the beginning of the sequence. 

Thus they can potentially take more context into account than n-gram 
LMs and NN LMs that use a sliding window.
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Figure 9.7 Autoregressive generation with an RNN-based neural language model.

task is part-of-speech tagging, discussed in detail in Chapter 8. In an RNN approach
to POS tagging, inputs are word embeddings and the outputs are tag probabilities
generated by a softmax layer over the tagset, as illustrated in Fig. 9.8.

In this figure, the inputs at each time step are pre-trained word embeddings cor-
responding to the input tokens. The RNN block is an abstraction that represents
an unrolled simple recurrent network consisting of an input layer, hidden layer, and
output layer at each time step, as well as the shared U , V and W weight matrices that
comprise the network. The outputs of the network at each time step represent the
distribution over the POS tagset generated by a softmax layer.

To generate a tag sequence for a given input, we can run forward inference over
the input sequence and select the most likely tag from the softmax at each step. Since
we’re using a softmax layer to generate the probability distribution over the output
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Figure 9.8 Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over
the part-of-speech tags as output at each time step.



Tag Sequences
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Sequence Classifiers
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This approach is usually implemented by adding a CRF (Lample et al., 2016) layer
as the final layer of recurrent network.

9.2.3 RNNs for Sequence Classification
Another use of RNNs is to classify entire sequences rather than the tokens within
them. We’ve already encountered this task in Chapter 4 with our discussion of sen-
timent analysis. Other examples include document-level topic classification, spam
detection, message routing for customer service applications, and deception detec-
tion. In all of these applications, sequences of text are classified as belonging to one
of a small number of categories.

To apply RNNs in this setting, the text to be classified is passed through the RNN
a word at a time generating a new hidden layer at each time step. The hidden layer
for the final element of the text, hn, is taken to constitute a compressed representation
of the entire sequence. In the simplest approach to classification, hn, serves as the
input to a subsequent feedforward network that chooses a class via a softmax over
the possible classes. Fig. 9.9 illustrates this approach.

x1 x2 x3 xn

RNN

hn

Softmax

Figure 9.9 Sequence classification using a simple RNN combined with a feedforward net-
work. The final hidden state from the RNN is used as the input to a feedforward network that
performs the classification.

Note that in this approach there are no intermediate outputs for the words in
the sequence preceding the last element. Therefore, there are no loss terms associ-
ated with those elements. Instead, the loss function used to train the weights in the
network is based entirely on the final text classification task. Specifically, the out-
put from the softmax output from the feedforward classifier together with a cross-
entropy loss drives the training. The error signal from the classification is backprop-
agated all the way through the weights in the feedforward classifier through, to its
input, and then through to the three sets of weights in the RNN as described earlier
in Section 9.1.2. This combination of a simple recurrent network with a feedforward
classifier is our first example of a deep neural network. And the training regimen
that uses the loss from a downstream application to adjust the weights all the way
through the network is referred to as end-to-end training.end-to-end

training



Encoder-Decoder networks 
Encoder-decoder networks are a kind of sequence-to-sequence model.  
Unlike vanilla RNNs, they can generate contextually appropriate, 
arbitrary length, output sequences. 

They are useful for a wide range of NLP applications including:

1. Machine Translation

2. Automatic summarization

3. Question answering

4. Dialog modelling



Auto-Regressive Generation 
with an RNN LM
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Recall: autoregressive 
generation
• ℎ! = 𝑔 𝑈ℎ!"# +𝑊𝑥! , 𝑦!= 𝑓(𝑉ℎ!)

• 𝑓 is a softmax over the set of possible outputs
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Figure 9.5 A simple recurrent neural network shown unrolled in time. Network layers are copied for each
time step, while the weights U , V and W are shared in common across all time steps.

weights from the input layer to the hidden layer, U , the weights from the previous
hidden layer to the current hidden layer, and finally V , the weights from the hidden
layer to the output layer.

Before going on, let’s first review some of the notation that we introduced in
Chapter 7. Assuming a network with an input layer x and a non-linear activation
function g, a

[i] refers to the activation value from a layer i, which is the result of
applying g to z

[i], the weighted sum of the inputs to that layer.
Fig. 9.5 illustrates two considerations that we didn’t have to worry about with

backpropagation in feedforward networks. First, to compute the loss function for
the output at time t we need the hidden layer from time t � 1. Second, the hidden
layer at time t influences both the output at time t and the hidden layer at time t +1
(and hence the output and loss at t + 1). It follows from this that to assess the error
accruing to ht , we’ll need to know its influence on both the current output as well as

the ones that follow.
Consider the situation where we are examining an input/output pair at time 2 as

shown in Fig. 9.6. What do we need to compute the gradients required to update
the weights U , V , and W here? Let’s start by reviewing how we compute the gra-
dients required to update V since this computation is unchanged from feedforward
networks. To review from Chapter 7, we need to compute the derivative of the loss
function L with respect to the weights V . However, since the loss is not expressed
directly in terms of the weights, we apply the chain rule to get there indirectly.

∂L

∂V
=

∂L

∂a

∂a

∂ z

∂ z

∂V

The first term on the right is the derivative of the loss function with respect to
the network output, a. The second term is the derivative of the network output with
respect to the intermediate network activation z, which is a function of the activation



Generation with prefix



Machine Translation (MT)
MT is the task of automatically translating sentences from one language 
into another. 

We use bilingual parallel texts to train MT systems – pairs of source-
target sentences that are translations of each other.

To extend LMs and autoregressive generation to MT, we will:

1. Add an end-of-sentence marker to each source sentence. 
Concatenate the target sentence to it.

2. Train an RNN LM based on this combined data.

3. To translate, simply treat the input sentence as a prefix, create a 
hidden state representation for it (encoding step).

4. Use the hidden state produced by the encoder to then start 
generating (decoding step)



Machine translation



Encoder-Decoder Networks
We can abstract away from the task of MT to talk about the general 
encoder-decoder architecture: 

1. An encoder takes an input sequence xn
1, and generates a 

corresponding sequence of contextualized representations, hn
1.

2. A context vector, c, is a function of hn
1, and conveys the essence of 

the input to the decoder. 

3. A decoder accepts c as input and generates an arbitrary length 
sequence of hidden states hm

1 , from which can be used to create a 
corresponding sequence of output states ym

1 .



Encoder-decoder networks



Encoder-decoder networks
• An encoder that accepts an input sequence and generates a 
corresponding sequence of contextualized representations

• A context vector that conveys the essence of the input to the decoder

• A decoder, which accepts context vector as input and generates an 
arbitrary length sequence of hidden states, from which a corresponding 
sequence of output states can be obtained



Encoder
Pretty much any kind of RNN or its variants can be used as an encoder. 
Researchers have used simple RNNs, LSTMs, GRUs, or even 
convolutional networks.

A widely used encoder design makes use of stacked Bi-LSTMs where the 
hidden states from top layers from the forward and backward passes 
are concatenated 



Stacked RNNs
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9.3 Deep Networks: Stacked and Bidirectional RNNs

As suggested by the sequence classification architecture shown in Fig. 9.9, recurrent
networks are quite flexible. By combining the feedforward nature of unrolled com-
putational graphs with vectors as common inputs and outputs, complex networks
can be treated as modules that can be combined in creative ways. This section intro-
duces two of the more common network architectures used in language processing
with RNNs.

9.3.1 Stacked RNNs
In our examples thus far, the inputs to our RNNs have consisted of sequences of
word or character embeddings (vectors) and the outputs have been vectors useful for
predicting words, tags or sequence labels. However, nothing prevents us from using
the entire sequence of outputs from one RNN as an input sequence to another one.
Stacked RNNs consist of multiple networks where the output of one layer serves asStacked RNNs
the input to a subsequent layer, as shown in Fig. 9.10.

y1 y2 y3
yn

x1 x2 x3 xn

RNN 1

RNN 3

RNN 2

Figure 9.10 Stacked recurrent networks. The output of a lower level serves as the input to
higher levels with the output of the last network serving as the final output.

It has been demonstrated across numerous tasks that stacked RNNs can outper-
form single-layer networks. One reason for this success has to do with the network’s
ability to induce representations at differing levels of abstraction across layers. Just
as the early stages of the human visual system detect edges that are then used for
finding larger regions and shapes, the initial layers of stacked networks can induce
representations that serve as useful abstractions for further layers — representations
that might prove difficult to induce in a single RNN.

The optimal number of stacked RNNs is specific to each application and to each
training set. However, as the number of stacks is increased the training costs rise
quickly.
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Figure 9.11 A bidirectional RNN. Separate models are trained in the forward and backward
directions with the output of each model at each time point concatenated to represent the state
of affairs at that point in time. The box wrapped around the forward and backward network
emphasizes the modular nature of this architecture.
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Figure 9.12 A bidirectional RNN for sequence classification. The final hidden units from
the forward and backward passes are combined to represent the entire sequence. This com-
bined representation serves as input to the subsequent classifier.

access to the entire preceding sequence, the information encoded in hidden states
tends to be fairly local, more relevant to the most recent parts of the input sequence
and recent decisions. It is often the case, however, that distant information is critical
to many language applications. To see this, consider the following example in the
context of language modeling.

(9.15) The flights the airline was cancelling were full.



Decoder
For the decoder, autoregressive generation is used to produce an 
output sequence, an element at a time, until an end-of-sequence 
marker is generated. 

This incremental process is guided by the context provided by the 
encoder as well as any items generated for earlier states by the decoder. 
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Figure 10.4 Basic architecture for an abstract encoder-decoder network. The context is a
function of the vector of contextualized input representations and may be used by the decoder
in a variety of ways.

Encoder

Simple RNNs, LSTMs, GRUs, convolutional networks, as well as transformer net-
works (discussed later in this chapter), can all be been employed as encoders. For
simplicity, our figures show only a single network layer for the encoder, however,
stacked architectures are the norm, where the output states from the top layer of the
stack are taken as the final representation. A widely used encoder design makes use
of stacked Bi-LSTMs where the hidden states from top layers from the forward and
backward passes are concatenated as described in Chapter 9 to provide the contex-
tualized representations for each time step.

Decoder

For the decoder, autoregressive generation is used to produce an output sequence,
an element at a time, until an end-of-sequence marker is generated. This incremen-
tal process is guided by the context provided by the encoder as well as any items
generated for earlier states by the decoder. Again, a typical approach is to use an
LSTM or GRU-based RNN where the context consists of the final hidden state of
the encoder, and is used to initialize the first hidden state of the decoder. (To help
keep things straight, we’ll use the superscripts e and d where needed to distinguish
the hidden states of the encoder and the decoder.) Generation proceeds as described
earlier where each hidden state is conditioned on the previous hidden state and out-
put generated in the previous state.

c = he
n

hd
0 = c

hd
t = g(ŷt�1,hd

t�1)

zt = f (hd
t )

yt = softmax(zt)

Recall, that g is a stand-in for some flavor of RNN and ŷt�1 is the embedding for the
output sampled from the softmax at the previous step.

A weakness of this approach is that the context vector, c, is only directly avail-
able at the beginning of the process and its influence will wane as the output se-
quence is generated. A solution is to make the context vector c available at each step

Encoder

Decoder



Decoder Weaknesses
In early encoder-decoder approaches, the context vector c was only 
directly available at the beginning of the generation process.

This meant that its influence became less-and-less imporant as the 
output sequence was generated. 

One solution is to make c available at each step in the decoding process, 
when generating the hidden states in the deocoder

and while producing the generated output.
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in the decoding process by adding it as a parameter to the computation of the current
hidden state.

hd
t = g(ŷt�1,hd

t�1,c)

A common approach to the calculation of the output layer y is to base it solely
on this newly computed hidden state. While this cleanly separates the underlying
recurrence from the output generation task, it makes it difficult to keep track of what
has already been generated and what hasn’t. A alternative approach is to condition
the output on both the newly generated hidden state, the output generated at the
previous state, and the encoder context.

yt = softmax(ŷt�1,zt ,c)

Finally, as shown earlier, the output y at each time consists of a softmax computa-
tion over the set of possible outputs (the vocabulary in the case of language models).
What one does with this distribution is task-dependent, but it is critical since the re-
currence depends on choosing a particular output, ŷ, from the softmax to condition
the next step in decoding. We’ve already seen several of the possible options for this.
For neural generation, where we are trying to generate novel outputs, we can sim-
ply sample from the softmax distribution. However, for applications like MT where
we’re looking for a specific output sequence, random sampling isn’t appropriate and
would likely lead to some strange output. An alternative is to choose the most likely
output at each time step by taking the argmax over the softmax output:

ŷ = argmaxP(yi|y<i)

This is easy to implement but as we’ve seen several times with sequence labeling,
independently choosing the argmax over a sequence is not a reliable way of arriving
at a good output since it doesn’t guarantee that the individual choices being made
make sense together and combine into a coherent whole. With sequence labeling we
addressed this with a CRF-layer over the output token types combined with a Viterbi-
style dynamic programming search. Unfortunately, this approach is not viable here
since the dynamic programming invariant doesn’t hold.

Beam Search

A viable alternative is to view the decoding problem as a heuristic state-space search
and systematically explore the space of possible outputs. The key to such an ap-
proach is controlling the exponential growth of the search space. To accomplish
this, we’ll use a technique called beam search. Beam search operates by combin-Beam Search
ing a breadth-first-search strategy with a heuristic filter that scores each option and
prunes the search space to stay within a fixed-size memory footprint, called the beam
width.

At the first step of decoding, we select the B-best options from the softmax output
y, where B is the size of the beam. Each option is scored with its corresponding
probability from the softmax output of the decoder. These initial outputs constitute
the search frontier. We’ll refer to the sequence of partial outputs generated along
these search paths as hypotheses.

At subsequent steps, each hypothesis on the frontier is extended incrementally
by being passed to distinct decoders, which again generate a softmax over the entire
vocabulary. To provide the necessary inputs for the decoders, each hypothesis must
include not only the words generated thus far but also the context vector, and the
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Finally, as shown earlier, the output y at each time consists of a softmax computa-
tion over the set of possible outputs (the vocabulary in the case of language models).
What one does with this distribution is task-dependent, but it is critical since the re-
currence depends on choosing a particular output, ŷ, from the softmax to condition
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Choosing the best output
For neural generation, where we are trying to generate novel outputs, 
we can simply sample from the softmax distribution. 

In MT where we’re looking for a specific output sequence, sampling 
isn’t appropriate and would likely lead to some strange output. 

Instead we choose the most likely output at each time step by taking 
the argmax over the softmax output 
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Beam search
In order to systematically explore the space of possible outputs for 
applications like MT, we need to control the exponential growth of the 
search space. 

Beam search: combining a breadth-first-search strategy with a heuristic 
filter that scores each option and prunes the search space to stay within 
a fixed-size memory footprint, called the beam width



Beam search



Attention
Weaknesses of the context vector:

• Only directly available at the beginning of the process and its influence 
will wane as the output sequence is generated

• Context vector is a function (e.g. last, average, max, concatenation) of 
the hidden states of the encoder. This approach loses useful information 
about each of the individual encoder states

Potential solution: attention mechanism



Attention mechanism
• Replace the static context vector with one that is dynamically derived 
from the encoder hidden states at each point during decoding

• A new context vector is generated at each decoding step and takes all 
encoder hidden states into derivation

• This context vector is available to decoder hidden state calculations
ℎ$% = 𝑔 2𝑦$"#, ℎ$"#% , 𝑐$



Attention mechanism
•To calculate 𝑐!, first find relevance of each encoder hidden state to the 
decoder state. Call it 𝑠𝑐𝑜𝑟𝑒(ℎ!"#$ , ℎ%&) for each encoder state 𝑗
• The 𝑠𝑐𝑜𝑟𝑒 can simply be dot product, or be parameterized with weights

• Normalize them with a softmax to create a vector of weights 𝛼!,% that tells 
us the proportional relevance of each encoder hidden state 𝑗 to the current 
decoder state 𝑖

𝛼!,% = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑠𝑐𝑜𝑟𝑒 ℎ!"#$ , ℎ%& ∀𝑗 ∈ 𝑒)

• Finally, context vector is the weighted average of encoder hidden states

𝑐! =5
%

𝛼!,% ℎ%&



Attention mechanism



Applications of Encoder-
Decoder Networks
• Text summarization
• Text simplification
• Question answering

• Image captioning
• And more. What do those tasks have in common?


