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Factoid Question Answering 
paradigms
• Information Retrieval based
• Relies on vast textual information
• First stage is finding relevant documents and passages
• Draw an answer

• Knowledge based
• Build semantic representation of query
• Query database of facts

• Industrial systems like Watson use a hybrid of both 
approaches



Information Retrieval-based 
Question Answering
Question Answer
Where is the Louvre Museum located? in Paris, France

What’s the abbreviation for limited partnership? L.P.

What are the names of Odin’s ravens? Huginn and Muninn

What currency is used in China? the yuan
What kind of nuts are used in marzipan? almonds

What instrument does Max Roach play? drums

What’s the official language of Algeria? Arabic

How many pounds are there in a stone? 14



Pipeline for IR based factoid 
answering
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23.1 IR-based Factoid Question Answering

The goal of information retrieval based question answering is to answer a user’s
question by finding short text segments on the web or some other collection of doc-
uments. Figure 23.1 shows some sample factoid questions and their answers.

Question Answer
Where is the Louvre Museum located? in Paris, France
What’s the abbreviation for limited partnership? L.P.
What are the names of Odin’s ravens? Huginn and Muninn
What currency is used in China? the yuan
What kind of nuts are used in marzipan? almonds
What instrument does Max Roach play? drums
What’s the official language of Algeria? Arabic
How many pounds are there in a stone? 14

Figure 23.1 Some sample factoid questions and their answers.

Figure 23.2 shows the three phases of an IR-based factoid question-answering
system: question processing, passage retrieval and ranking, and answer extraction.
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Figure 23.2 IR-based factoid question answering has three stages: question processing, passage retrieval, and
answer processing.

23.1.1 Question Processing

The main goal of the question-processing phase is to extract the query: the keywords
passed to the IR system to match potential documents. Some systems additionally
extract further information such as:

• answer type: the entity type (person, location, time, etc.). of the answer
• focus: the string of words in the question that are likely to be replaced by the

answer in any answer string found.
• question type: is this a definition question, a math question, a list question?

For example, for the question Which US state capital has the largest population?
the query processing might produce:
query: “US state capital has the largest population”
answer type: city
focus: state capital

In the next two sections we summarize the two most commonly used tasks, query
formulation and answer type detection.



Question Processing
answer type: the entity type (person, location, time, 
etc.) 
focus: the string of words in the question that are likely 
to be replaced by the answer in any answer string 
found.
question type: is this a definition question, a math 
question, a list question? 
Which US state capital has the largest population? 
query: “US state capital has the largest population” 
answer type: city
focus: state capital 



Query formulation
Goal: create a query to send to an information retrieval 
system to retrieve documents that might contain answer 
strings.

Input Reformulation Rule Output

when was the laser 
invented? 

wh-word did A verb B 
→ ...A verb+ed B 

the laser was 
invented 

where is the Valley 
of the Kings? 

wh-word did A verb B 
→ ...A verb+ed B 

the Valley of the 
Kings is located 
in



Answer types
Some systems make use of question classification, which is the the task 
of finding the answer type, which is the category of the answer, often 
based on named entity types.

Question Expected Answer Type

Who founded Virgin Airlines? PERSON

Who is Elon Musk? BIOGRAPHY

Where is the Statue of Liberty located? LOCATION

What is the state with the largest population? STATE

What is the state flower of California? FLOWER





Answer types
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Figure 23.3 A subset of the Li and Roth (2005) answer types.

methods rely on words in the questions and their embeddings, the part-of-speech of
each word, and named entities in the questions. Often, a single word in the question
gives extra information about the answer type, and its identity is used as a feature.
This word is sometimes called the answer type word or question headword, and
may be defined as the headword of the first NP after the question’s wh-word; head-
words are indicated in boldface in the following examples:

(23.7) Which city in China has the largest number of foreign financial companies?
(23.8) What is the state flower of California?

In general, question classification accuracies are relatively high on easy ques-
tion types like PERSON, LOCATION, and TIME questions; detecting REASON and
DESCRIPTION questions can be much harder.

23.1.4 Document and Passage Retrieval

The IR query produced from the question processing stage is sent to an IR engine,
resulting in a set of documents ranked by their relevance to the query. Because
most answer-extraction methods are designed to apply to smaller regions such as
paragraphs, QA systems next divide the top n documents into smaller passages suchpassages

as sections, paragraphs, or sentences. These might be already segmented in the
source document or we might need to run a paragraph segmentation algorithm.

The simplest form of passage retrieval is then to simply pass along every pas-passage

retrieval

sages to the answer extraction stage. A more sophisticated variant is to filter the
passages by running a named entity or answer type classification on the retrieved
passages. Passages that don’t contain the answer type that was assigned to the ques-
tion are discarded.

It’s also possible to use supervised learning to fully rank the remaining passages,
using features like:

• The number of named entities of the right type in the passage
• The number of question keywords in the passage
• The longest exact sequence of question keywords that occurs in the passage
• The rank of the document from which the passage was extracted
• The proximity of the keywords from the original query to each other (Pasca 2003,

Monz 2004).
• The number of n-grams that overlap between the passage and the question

(Brill et al., 2002).



Entity Type Example
animal What are kind of birds did the god Odin have?
body What part of your body contains the corpus callosum?
color What colors make up a rainbow?
creative In what book can I find the story of Aladdin?
currency What currency is used in China?
disease/medicine What does Salk vaccine prevent?
event What war involved the battle of Chapultepec?
food What kind of nuts are used in marzipan?
instrument What instrument does Max Roach play?
language What’s the official language of Algeria?
letter What letter appears on the cold-water tap in Spain?
other What is the name of King Arthur’s sword?
plant What are some fragrant white climbing roses?
product What is the fastest computer?
religion What religion has the most members?
sport What was the name of the ball game played by the Mayans? 
substance What fuel do airplanes use?
symbol What is the chemical symbol for nitrogen?



Document and Passage 
Retrieval
The question processing stage creates a query to send 
to an IR system, which returns a set of documents 
ranked by their relevance to the query. 

Perform passage retrieval by divide the top ranked
documents into smaller passages.  Pass these along to 
the answer extraction phase or filter them based on 
answer type classification.

In web search, passage retrieval attempts to extract the 
snippets from the retrieved pages so that the relevant 
passages can be displayed to the user.



Features used to rank 
passages

1. The number of named entities of the correct type in the 
passage

2. The number of question keywords in the passage

3. The longest exact sequence of question keywords that 
occurs in the passage

4. The rank of the document from which the passage was 
extracted

5. The proximity of the keywords from the original query to 
each other

6. The number of n-grams that overlap between the 
passage and the question



Answer extraction 
After we have performed passage retrieval, we need to extract a 
specific answer from a passage.  This task is commonly modeled 
by span labeling.  

A simple baseline is to perform NER and retrieve the span with 
the correct answer type.

Who is the prime minister of India?

Prime minister Narendra Modi ordered a complete lockdown for 
India's 1.3 billion people to contain the India’s coronavirus 
outbreak.

How tall is Mt. Everest?

The official height of Mount Everest is 29029 feet 



Answer extraction
Many questions, like DEFINITION questions, do not have a simple 
named entity as their answer type.  Therefore, modern systems 
tend to use supervised learning. 

Pattern Question Answer

<answer phrase> 
such as <question 
phrase>

What is autism? … , developmental 
disorders such as 
autism …

<question phrase> , 
a <answer phrase>

What is a caldera? The Long Valley 
caldera, a volcanic 
crater 19 miles long



Feature-based approaches
Feature Definition 

Answer type match True if the candidate answer contains a phrase with the 
correct answer type. 

Pattern match The identity of a pattern that matches the candidate 
answer 

Num matched keywords How many question keywords are in the candidate 
answer?

Keyword distance The distance between the candidate answer and query 
keywords 

Novelty factor True if at least one word in the candidate answer is not in 
the query 

Apposition features True if the candidate answer is an appositive to a phrase 
containing many question terms 

Punctuation location True if the candidate answer is followed punct.

Longest sequences The length of the longest sequence of question terms that 
occurs in the candidate answer. 

Answer redundancy How many other canddiate passages contain this answer?



N-gram tiling
Relying on the redundancy of the web, this method begins with 
the snippets returned from the web search engine, produced by a 
reformulated query.

First step
• Every unigram, bigram and trigram occurring in snippet is extracted 

and weightd
• Weight is a function of number of snippets in which the n-gram 

occurred, and weight of query reformulation pattern that returned it.

Filtering, based on match to predicted answer type.

N-gram tiling algorithm
• Concatenate overlapping n-gram fragments into longer answers
• Greedy method: start with highest scoring candidate and try to tile 

each other candidate. Best scoring concatenation is added to set of 
candidates.



Neural Answer Extraction
Given a question q with l tokens and a passage p with m, compute for 
each token pi in the passage the probability it is the start of the answer 
span, and the the end of the answer span. 
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each answer type. Finally, an n-gram tiling algorithm concatenates overlapping n-
gram fragments into longer answers. A standard greedy method is to start with the
highest-scoring candidate and try to tile each other candidate with this candidate.
The best-scoring concatenation is added to the set of candidates, the lower-scoring
candidate is removed, and the process continues until a single answer is built.

23.1.8 Neural Answer Extraction

Neural network approaches to answer extraction draw on the intuition that a question
and its answer are semantically similar in some appropriate way. As we’ll see, this
intuition can be fleshed out by computing an embedding for the question and an
embedding for each token of the passage, and then selecting passage spans whose
embeddings are closest to the question embedding.

Reading Comprehension Datasets. Because neural answer extractors are often
designed in the context of the reading comprehension task, let’s begin by talkingreading

comprehension

about that task. It was Hirschman et al. (1999) who first proposed to take children’s
reading comprehension tests—pedagogical instruments in which a child is given
a passage to read and must answer questions about it—and use them to evaluate
machine text comprehension algorithm. They acquired a corpus of 120 passages
with 5 questions each designed for 3rd-6th grade children, built an answer extraction
system, and measured how well the answers given by their system corresponded to
the answer key from the test’s publisher.

Modern reading comprehension systems tend to use collections of questions that
are designed specifically for NLP, and so are large enough for training supervised
learning systems. For example the Stanford Question Answering Dataset (SQuAD)SQuAD

consists of passages from Wikipedia and associated questions whose answers are
spans from the passage, as well as some questions that are designed to be unan-
swerable (Rajpurkar et al. 2016, Rajpurkar et al. 2018); a total of just over 150,000
questions. Fig. 23.7 shows a (shortened) excerpt from a SQUAD 2.0 passage to-
gether with three questions and their answer spans.

Beyoncé Giselle Knowles-Carter (born September 4, 1981) is an American singer, songwriter,
record producer and actress. Born and raised in Houston, Texas, she performed in various
singing and dancing competitions as a child, and rose to fame in the late 1990s as lead singer
of R&B girl-group Destiny’s Child. Managed by her father, Mathew Knowles, the group became
one of the world’s best-selling girl groups of all time. Their hiatus saw the release of Beyoncé’s
debut album, Dangerously in Love (2003), which established her as a solo artist worldwide, earned
five Grammy Awards and featured the Billboard Hot 100 number-one singles “Crazy in Love” and
“Baby Boy”.
Q: “In what city and state did Beyoncé grow up?”
A: “Houston, Texas”
Q: “What areas did Beyoncé compete in when she was growing up?”
A: “singing and dancing”
Q: “When did Beyoncé release Dangerously in Love?”
A: “2003”

Figure 23.7 A (Wikipedia) passage from the SQuAD 2.0 dataset (Rajpurkar et al., 2018) with 3 sample
questions and the labeled answer spans.

SQuAD was build by having humans write questions for a given Wikipedia
passage and choose the answer span. Other datasets used similar techniques; the
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NewsQA dataset consists of 100,000 question-answer pairs from CNN news arti-
cles, For other datasets like WikiQA the span is the entire sentence containing the
answer (Yang et al., 2015); the task of choosing a sentence rather than a smaller
answer span is sometimes called the sentence selection task.sentence

selection

These reading comprehension datasets are used both as a reading comprehension
task in themselves, and as a training set and evaluation set for the sentence extraction
component of open question answering algorithms.

Basic Reading Comprehension Algorithm. Neural algorithms for reading com-
prehension are given a question q of l tokens q1, ...,ql¡ and a passage p of m tokens
p1, ..., pm. Their goal is to compute, for each token pi the probability pstart(i) that
pi is the start of the answer span, and the probability pend(i), that pi is the end of
the answer span.

Fig. 23.8 shows the architecture of the Document Reader component of the
DrQA system of Chen et al. (2017). Like most such systems, DrQA builds an
embedding for the question, builds an embedding for each token in the passage,
computes a similarity function between the question and each passage word in con-
text, and then uses the question-passage similarity scores to decide where the answer
span starts and ends.

Beyonce’s debut album
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Figure 23.8 The question answering system of Chen et al. (2017), considering part of the question When did
Beyoncé release Dangerously in Love? and the passage starting Beyoncé’s debut album, Dangerously in Love
(2003).

Let’s consider the algorithm in detail, following closely the description in Chen
et al. (2017). The question is represented by a single embedding q, which is a
weighted sum of representations for each question word qi. It is computed by
passing the series of embeddings PE(q1), ...,E(ql) of question words through an
RNN (such as a bi-LSTM shown in Fig. 23.8). The resulting hidden representations
{q1, ...,ql} are combined by a weighted sum

q =
X

j

b jq j (23.9)

Neural Answer Extraction: bi-LSTM 
based approach



Neural Answer Extraction: BERT 
based approach



Knowledge-based Question 
Answering
Instead of trying to find a span of text on the web, knowledge 
based QA systems map a natural language question onto a query 
over a structured database.

Systems for mapping from a text string to any logical form are 
called semantic parsers. 

Question Logical forms

When was Ada Lovelace born? birth-year (Ada Lovelace, ?x)

What states border Texas? λ x.state(x) ∧ borders(x,texas)

What is the largest state? argmax(λ x.state(x), λ x.size(x))

How many people survived the 
sinking of the Titanic?

(count (!fb:event.disaster.survivors
fb:en.sinking of the titanic))



BASEBALL: AN AUTOMATIC QUESTION-ANSWERER 

Bert F. Green, Jr., Alice K. Wolf, Carol Chomsky, and Kenneth Laughery 
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Summary 

Baseball is a computer program that answers 
questions phrased in ordinary English about stored 
data. The program reads the question from punched 
cards. After the words and idioms are looked up 
in a dictionary, the phrase structure and other 
syntactic facts are determined for a content 
analysis, which lists attribute-value pairs 
specifying the information given and the infor-
mation requested. The requested information is 
then extracted from the data matching the speci-
fications, and any necessary processing is done. 
Finally, the answer is printed. The program's 
present context is baseball games; it answers 
such questions as "Where did each team play on 
July 7?" 

Introduction 

Men typically communicate with computers in 
a variety of artificial, stylized, unambiguous 
languages that are tetter adapted to the machine 
than to the man. For convenience and speed, 
many future computer-centered systems will 
require men to communicate with computers in 
natural language. The "business executive, the 
military commander, and the scientist need to 
ask questions of the computer in ordinary English, 
and to have the computer answer questions 
directly. Baseball is a first step toward this 
goal. 

Baseball is a computer program that answers 
questions posed in ordinary English about data 
in its store. The program consists of two parts. 
The linguistic part reads the question from a 
punched card, analyzes it syntactically, and 
determines what information is given about the 
data being requested. The processor searches 
through the data for the appropriate information, 
processes the results of the search, and prints 
the answer. 

The program is written in IPL-V , an infor-
mation processing language that uses lists, and 
hierarchies of lists, called list structures, to 
represent information. Both the data and the 
dictionary are list structures, in which items 
of information are expressed as attribute-value 
pairs, e.g., Team = Red Sox. 

^Operated with support from the U.S. Army, Navy, 
and Air Force. 

The program operates in the context of 
baseball data. At present, the data are the month, 
day, place, teams and scores for each game in the 
American League for one year. In this limited 
context, a small vocabulary is sufficient, the 
data are simple, and the subject-matter is 
familiar. 

Some temporary restrictions were placed on 
the input questions so that the initial program 
could be relatively straightforward. Questions 
are limited to a single clause; by prohibiting 
structures with dependent clauses the syntactic 
analysis is considerably simplified. Logical 
connectives, such as and, or, and not, are pro-
hibited, as are constructions implying relations 
like most and highest. Finally, questions 
involving sequential facts, such as "Did the 
Red Sox ever win six games in a row?" are pro-
hibited. These restrictions are temporary 
expedients that will be removed in later 
versions of the program. Moreover, they do not 
seriously reduce the number of questions that 
the program is capable of answering. From simple 
questions such as "Who did the Red Sox lose to 
on July 5?" to complex questions such as "Did 
every team play at least once in each park in 
each month?" lies a vast number of answerable 
questions. 

Specification List 

Fundamental to the operation of the baseball 
program is the concept of the specification list, 
o r s P e c list. This list can be viewed as a 
canonical expression for the meaning of the 
question; it represents the information contained 
in the question in the form of attribute-value 
pairs, e.g., Team = Red Sox. The spec list is 
generated from the question by the linguistic 
part of the program, and it governs the operation 
of the processor. For example, the question 
"Where did the Red Sox play on July 7?" has the 
spec list: 

Place = ? 
Team = Red Sox 
Month = July 
Day = 7 

Some questions cannot be expressed solely 
in terms of the main attributes (Month, Day, Place, 
Team, Score and Game Serial Number), but require 
some modification of these attributes. For 
example, on the spec list of "What teams won 10 
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Rule based systems
For frequent relations, it is worthwhile to write handwritten rules 
to extract relations from the question.

To extract the birth-year relation, we could write a pattern that 
searches for the question word When, a main verb like born, and 
then extract the named entity argument of the verb.



Supervised systems
Learn a mapping between questions and database relations by parsing 
training data, and then learning general patterns.
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those pairs of training tuples and produce a system that maps from new questions to
their logical forms.

Most supervised algorithms for learning to answer these simple questions about
relations first parse the questions and then align the parse trees to the logical form.
Generally these systems bootstrap by having a small set of rules for building this
mapping, and an initial lexicon as well. For example, a system might have built-
in strings for each of the entities in the system (Texas, Ada Lovelace), and then
have simple default rules mapping fragments of the question parse tree to particular
relations:

Who V ENTITY ! relation( ?x, entity)

nsubj dobj

When V ENTITY ! relation( ?x, entity)

tmod nsubj

Then given these rules and the lexicon, a training tuple like the following:

“When was Ada Lovelace born?” ! birth-year (Ada Lovelace, ?x)

would first be parsed, resulting in the following mapping.

When was Ada Lovelace born ! birth-year(Ada Lovelace, ?x)

tmod

nsubj

From many pairs like this, we could induce mappings between pieces of parse
fragment, such as the mapping between the parse fragment on the left and the rela-
tion on the right:

When was · born ! birth-year( , ?x)

tmod

nsubj

A supervised system would thus parse each tuple in the training set and induce a
bigger set of such specific rules, allowing it to map unseen examples of “When was
X born?” questions to the birth-year relation. Rules can furthermore be associ-
ated with counts based on the number of times the rule is used to parse the training
data. Like rule counts for probabilistic grammars, these can be normalized into prob-
abilities. The probabilities can then be used to choose the highest probability parse
for sentences with multiple semantic interpretations.

The supervised approach can be extended to deal with more complex questions
that are not just about single relations. Consider the question What is the biggest
state bordering Texas? —taken from the GeoQuery database of questions on U.S.
Geography (Zelle and Mooney, 1996)—with the semantic form: argmax(lx.state(x)^
borders(x, texas),lx.size(x)) This question has much more complex structures than
the simple single-relation questions we considered above, such as the argmax func-
tion, the mapping of the word biggest to size and so on. Zettlemoyer and Collins
(2005) shows how more complex default rules (along with richer syntactic struc-
tures) can be used to learn to map from text sentences to more complex logical
forms. The rules take the training set’s pairings of sentence and meaning as above
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Dealing with Variation 

capital of capital city of become capital of

capitol of national capital of official capital of

political capital of administrative capital of beautiful capital of

capitol city of bustling capital of make capital of

political center of move its capital to capital city in

cosmopolitan capital of remain capital of modern capital of

federal capital of beautiful capital city of administrative capital city of

Some phrases that align with the Freebase relation 
country.capital



Paraphrase databases
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Another useful source of linguistic redundancy are paraphrase databases. For ex-
ample the site wikianswers.com contains millions of pairs of questions that users
have tagged as having the same meaning, 18 million of which have been collected
in the PARALEX corpus (Fader et al., 2013). Here’s an example:

Q: What are the green blobs in plant cells?

Lemmatized synonyms from PARALEX:
what be the green blob in plant cell?
what be green part in plant cell?
what be the green part of a plant cell?
what be the green substance in plant cell?
what be the part of plant cell that give it green color?
what cell part do plant have that enable the plant to be give a green color?
what part of the plant cell turn it green?
part of the plant cell where the cell get it green color?
the green part in a plant be call?
the part of the plant cell that make the plant green be call?

The resulting millions of pairs of question paraphrases can be aligned to each
other using MT alignment approaches to create an MT-style phrase table for trans-
lating from question phrases to synonymous phrases. These can be used by question
answering algorithms to generate all paraphrases of a question as part of the process
of finding an answer (Fader et al. 2013, Berant and Liang 2014).

23.3 Using multiple information sources: IBM’s Watson

Of course there is no reason to limit ourselves to just text-based or knowledge-based
resources for question answering. The Watson system from IBM that won the Jeop-
ardy! challenge in 2011 is an example of a system that relies on a wide variety of
resources to answer questions.
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Figure 23.11 The 4 broad stages of Watson QA: (1) Question Processing, (2) Candidate Answer Generation,
(3) Candidate Answer Scoring, and (4) Answer Merging and Confidence Scoring.

Figure 23.11 shows the 4 stages of the DeepQA system that is the question an-



Value of Logical 
Representation of Sentences

Is Barack Obama a US Citizen?

Citizen_Of(Barack_Obama, United_States) 

∀x Person(x) ∧ Born-In(x, y) 
∧ Located-In(y, United_States) 
⇒ Citizen_Of(x, United_States) 

Person(Barack_Obama) ∧

Born-In(Barack_Obama, Hawaii) ∧

Located-In(Hawaii, United_States)

Citizen_Of(Barack_Obama, United_States) 



Evaluating QA systems
To evaluate a system that returns a ranked set answers for a test 
set consisting of N questions, the mean reciprocal rank (MRR) is 
defined as 
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that systems are returning a short ranked list of answers or passages containing an-
swers. Each question is then scored according to the reciprocal of the rank of the
first correct answer. For example if the system returned five answers but the first
three are wrong and hence the highest-ranked correct answer is ranked fourth, the
reciprocal rank score for that question would be 1

4 . Questions with return sets that
do not contain any correct answers are assigned a zero. The score of a system is
then the average of the score for each question in the set. More formally, for an
evaluation of a system returning a set of ranked answers for a test set consisting of
N questions, the MRR is defined as

MRR =
1
N

NX

i=1 s.t. ranki 6=0

1
ranki

(23.14)

Reading comprehension systems on datasets like SQuAD are often evaluated
using two metrics, both ignoring punctuations and articles (a, an, the) (Rajpurkar
et al., 2016):

• Exact match: The percentage of predicted answers that match the gold answer
exactly.

• F1 score: The average overlap between predicted and gold answers. Treat the
prediction and gold as a bag of tokens, and compute F1, averaging the F1 over
all questions.

A number of test sets are available for question answering. Early systems used
the TREC QA dataset; questions and hand-written answers for TREC competitions
from 1999 to 2004 are publicly available. TriviaQA (Joshi et al., 2017) has 650K
question-answer evidence triples, from 95K hand-created question-answer pairs to-
gether with on average six supporting evidence documents collected retrospectively
from Wikipedia and the Web.

Another family of datasets starts from WEBQUESTIONS (Berant et al., 2013),
which contains 5,810 questions asked by web users, each beginning with a wh-
word and containing exactly one entity. Questions are paired with hand-written an-
swers drawn from the Freebase page of the question’s entity. WEBQUESTIONSSP
(Yih et al., 2016) augments WEBQUESTIONS with human-created semantic parses
(SPARQL queries) for those questions answerable using Freebase. COMPLEXWE-
BQUESTIONS augments the dataset with compositional and other kinds of complex
questions, resulting in 34,689 question questions, along with answers, web snippets,
and SPARQL queries. (Talmor and Berant, 2018).

There are a wide variety of datasets for training and testing reading comprehen-
sion/answer extraction in addition to the SQuAD (Rajpurkar et al., 2016) and Wik-
iQA (Yang et al., 2015) datasets discussed on page 9. The NarrativeQA (Kočiskỳ
et al., 2018) dataset, for example, has questions based on entire long documents like
books or movie scripts, while the Question Answering in Context (QuAC) dataset
(Choi et al., 2018) has 100K questions created by two crowdworkers who are asking
and answering questions about a hidden Wikipedia text.

Others take their structure from the fact that reading comprehension tasks de-
signed for children tend to be multiple choice, with the task being to choose among
the given answers. The MCTest dataset uses this structure, with 500 fictional short
stories created by crowd workers with questions and multiple choice answers (Richard-
son et al., 2013). The AI2 Reasoning Challenge (ARC) (Clark et al., 2018), has
questions that are designed to be hard to answer from simple lexical methods:



Evaluating systems on SQuAD
Reading comprehension systems on datasets like SQuAD are 
often evaluated using two metrics (both ignore punctuation and 
articles):

Exact match: The percentage of predicted answers that match 
the gold answer exactly. 

F1 score: The average overlap between predicted and gold 
answers. Treat the prediction and gold as a bag of tokens, and 
compute F1, averaging the F1 over all questions. 



IBM Watson architecture 
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IBM Watson

https://www.youtube.com/watch?v=lIrN_cSNe_Y

https://www.youtube.com/watch%3Fv=lIrN_cSNe_Y


More challenging QA tasks
AI2 Reasoning Challenge (ARC) (Clark et al., 2018), has questions 
that are designed to be hard to answer from simple lexical 
methods: 

Which property of a mineral can be determined just by looking at 
it? 

(A) luster 

(B) mass 

(C) weight 

(D) hardness 



More challenging QA tasks
Khashabi (2018) introduced a challenge set for reading 
comprehension over multiple sentences

Which property of a mineral can be determined just by looking at 
it? 

sentence questions (according to Narasimhan and
Barzilay (2015) accuracy of about 83% and 60%
on these two types of questions, respectively).

There could be multiple reasons for this. First,
multi-sentence reasoning seems to be inherently
a difficult task. Research has shown that while
complete-sentence construction emerges as early
as first grade for many children, their ability
to integrate sentences emerges only in fourth
grade (Berninger et al., 2011). Answering multi-
sentence questions might be more challenging
for an automated system because it involves
more than just processing individual sentences but
rather combining linguistic, semantic and back-
ground knowledge across sentences—a computa-
tional challenges in itself. Despite these chal-
lenges, multi-sentence questions can be answered
by humans and hence present an interesting yet
reasonable goal for AI systems (Davis, 2014).

In this work, we propose a multi-sentence QA
challenge in which questions can be answered
only using information from multiple sentences.
Specifically, we present MultiRC (Multi-Sentence
Reading Comprehension)1—a dataset of short
paragraphs and multi-sentence questions that can
be answered from the content of the paragraph.
Each question is associated with several choices
for answer-options, out of which one or more cor-
rectly answer the question. Figure 1 shows two
examples from our dataset. Each instance consists
of a multi-sentence paragraph, a question, and
answer-options. All instances were constructed
such that it is not possible to answer a question
correctly without gathering information from mul-
tiple sentences. Due to space constraints, the fig-
ure shows only the relevant sentences from the
original paragraph. The entire corpus consists of
871 paragraphs and about ⇠ 6k multi-sentence
questions.

The goal of this dataset is to encourage the re-
search community to explore approaches that can
do more than sophisticated lexical-level matching.
To accomplish this, we designed the dataset with
three key challenges in mind. (i) The number of
correct answer-options for each question is not
pre-specified. This removes the over-reliance of
current approaches on answer-options and forces
them to decide on the correctness of each can-
didate answer independently of others. In other
words, unlike previous work, the task here is not

1http://cogcomp.org/multirc/

S3: Hearing noises in the garage, Mary Murdock finds a
bleeding man, mangled and impaled on her jeep’s bumper.
S5: Panicked, she hits him with a golf club.
S10: Later the news reveals the missing man is kindergarten
teacher, Timothy Emser.
S12: It transpires that Rick, her boyfriend, gets involved in
the cover up and goes to retrieve incriminatory evidence off
the corpse, but is killed, replaced in Emser’s grave.
S13: It becomes clear Emser survived.
S15: He stalks Mary many ways.
Who is stalking Mary?
A)* Timothy D) Rick
B) Timothy’s girlfriend E) Murdock
C)* The man she hit F) Her Boyfriend
S1: Most young mammals, including humans, play.
S2: Play is how they learn the skills that they will need as
adults.
S6: Big cats also play.
S8: At the same time, they also practice their hunting skills.
S11: Human children learn by playing as well.
S12: For example, playing games and sports can help them
learn to follow rules.
S13: They also learn to work together.
What do human children learn by playing games and sports?
A)* They learn to follow rules and work together
B) hunting skills
C)* skills that they will need as adult

Figure 1: Examples from our MultiRCcorpus. Each ex-
ample shows relevant excerpts from a paragraph; multi-
sentence question that can be answered by combin-
ing information from multiple sentences of the para-
graph; and corresponding answer-options. The correct
answer(s) is indicated by a *. Note that there can be
multiple correct answers per question.

to simply identify the best answer-option, but to
evaluate the correctness of each answer-option in-
dividually. For example, the first question in Fig-
ure 1 can be answered by combining information
from sentences 3, 5, 10, 13 and 15. It requires
not only understanding that the stalker’s name is
Timothy but also that he is the man who Mary had
hit. (ii) The correct answer(s) is not required to
be a span in the text. For example, the correct an-
swer, A, of the second question in Figure 1 is not
present in the paragraph verbatim. It is instead a
combination of two spans from 2 sentences: 12
and 13. Such answer-options force models to pro-
cess and understand not only the paragraph and
the question but also the answer-options. (iii) The
paragraphs in our dataset have diverse provenance
by being extracted from 7 different domains such
as news, fiction, historical text etc., and hence are
expected to be more diverse in their contents as
compared to single-domain datasets. We also ex-
pect this to lead to diversity in the types of ques-
tions that can be constructed from the passage.

Overall, we introduce a reading comprehension



More challenging QA tasks

Question: when are hops added to the brewing process?
Answer: The boiling process

https://ai.google.com/research/NaturalQuestions

https://ai.google.com/research/NaturalQuestions

