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I love this movie! It's sweet, 
but with satirical humor. The 
dialogue is great and the 
adventure scenes are fun... 
It manages to be whimsical 
and romantic while laughing 
at the conventions of the 
fairy tale genre. I would 
recommend it to just about 
anyone. I've seen it several 
times, and I'm always happy 
to see it again whenever I 
have a friend who hasn't 
seen it yet!
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c∈C

P(cj ) P(x | c)
x∈X
∏

Text Classification



Regular 
Expressions

4

The bow lute, 
such as the 
Bambara ndang, 
is plucked and 
has an individual 
curved neck for 
each string 

and Hearst Patterns



Morphology
Morphemes:
◦ The small meaningful units that make up words
◦ Stems: The core meaning-bearing units
◦ Affixes: Bits and pieces that adhere to stems
◦ Often with grammatical functions



Stemming
Reduce terms to their stems in information retrieval

Stemming is crude chopping of affixes
◦ language dependent
◦ e.g., automate(s), automatic, automation all reduced to automat.

for example compressed 
and compression are both 
accepted as equivalent to 
compress.

for exampl compress and
compress ar both accept
as equival to compress



Word Pieces via Byte Pair 
Encoding

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

dictionary vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, r , er , ew
2 l o w e s t
6 n ew er
3 w i d er
2 n ew

If we continue, the next merges are:

Merge Current Vocabulary
(n, ew) , d, e, i, l, n, o, r, s, t, w, r , er , ew, new
(l, o’ , d, e, i, l, n, o, r, s, t, w, r , er , ew, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, r , er , ew, new, lo, low
(new, er ) , d, e, i, l, n, o, r, s, t, w, r , er , ew, new, lo, low, newer
(low, ) , d, e, i, l, n, o, r, s, t, w, r , er , ew, new, lo, low, newer , low

When we need to tokenize a test sentence, we just run the merges we have
learned, greedily, in the order we learned them, on the test data. (Thus the fre-
quencies in the test data don’t play a role, just the frequencies in the training data).
So first we segment each test sentence word into characters. Then we apply the first
rule: replace every instance of r in the test corpus with r , and then the second
rule: replace every instance of e r in the test corpus with er , and so on. By the
end, if the test corpus contained the word n e w e r , it would be tokenized as a
full word. But a new (unknown) word like l o w e r would be merged into the
two tokens low er .

Of course in real algorithms BPE is run with many thousands of merges on a
very large input dictionary. The result is that most words will be represented as
full symbols, and only the very rare words (and unknown words) will have to be
represented by their parts. The full BPE learning algorithm is given in Fig. 2.12.

Wordpiece and Greedy Tokenization

There are some alternatives to byte pair encoding for inducing tokens. Like the BPE
algorithm, the wordpiece algorithm starts with some simple tokenization (such aswordpiece

by whitespace) into rough words, and then breaks those rough word tokens into
subword tokens. The wordpiece model differs from BPE only in that the specialwordpiece

word-boundary token appears at the beginning of words rather than at the end,
and in the way it merges pairs. Rather than merging the pairs that are most frequent,
wordpiece instead merges the pairs that minimizes the language model likelihood of
the training data. We’ll introduce these concepts in the next chapter, but to simplify,
the wordpiece model chooses the two tokens to combine that would give the training
corpus the highest probability (Wu et al., 2016).

In the wordpiece segmenter used in BERT (Devlin et al., 2019), like other word-
piece variants, an input sentence or string is first split by some simple basic tokenizer
(like whitespace) into a series of rough word tokens. But then instead of using a
word boundary token, word-initial subwords are distinguished from those that do
not start words by marking internal subwords with special symbols ##, so that we
might split unaffable into ["un", "\#\#aff", "\#\#able"]. Then each word
token string is tokenized using a greedy longest-match-first algorithm. This is dif-
ferent than the decoding algorithm we introduced for BPE, which runs the merges
on the test sentence in the same order they were learned from the training set.

Greedy longest-match-first decoding is sometimes called maximum matchingmaximum
matching

or MaxMatch. The maximum matching algorithm (Fig. 2.13) is given a vocabu-
lary (a learned list of wordpiece tokens) and a string and starts by pointing at the



Var Definition Value Weight Product

x1 Count of positive lexicon words 3 2.5 7.5

x2 Count of negative lexicon words 2 -5.0 -10

x3 Does no appear?  (binary feature) 1 -1.2 -1.2

x4 Num 1st and 2nd person pronouns 3 0.5 1.5

x5 Does ! appear? (binary feature) 0 2.0 0

x6 Log of the word count for the doc 4.15 0.7 2.905

b bias 1 0.1 .1

Logistic Regression

𝑃 𝑦 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
= 𝜎 𝑤 ⋅ 𝑥 + 𝑏

= 𝜎 0.805
= 0.69



Cross-entropy loss
Why does minimizing this negative log probability do what 
we want?  We want the loss to be smaller if the model’s 
estimate is close to correct, and we want the loss to be 
bigger if it is confused. 

It's hokey. There are virtually no surprises , and the writing is second-rate . 
So why was it so enjoyable? For one thing , the cast is great . Another nice 
touch is the music . I was overcome with the urge to get off the couch and 
start dancing . It sucked me in , and it'll do the same to you .

𝐿!" "𝑦, 𝑦 = −[𝑦 log σ(w·x+b) + 1 − 𝑦 log(1 − σ(w·x+b))]

P(sentiment=1|It’s hokey...) = 0.69.      Let’s say y=1.

= −[log σ(w·x+b) ]

= − log (0.69) = 𝟎. 𝟑𝟕



Gradient Descent



https://www.youtube.com/watch?v=M8MJFrdfGe0

https://www.youtube.com/watch%3Fv=M8MJFrdfGe0


N-Gram Language Models

unigram no history
!
!

"

p(𝑤!) 𝑝 𝑤! =
𝑐𝑜𝑢𝑛𝑡(𝑤!)
𝑎𝑙𝑙 𝑤𝑜𝑟𝑑𝑠

bigram 1 word as history
!
!

"

p(𝑤!|𝑤!#$) 𝑝 𝑤!|𝑤!#$ =
𝑐𝑜𝑢𝑛𝑡(𝑤!#$𝑤!)
𝑐𝑜𝑢𝑛𝑡(𝑤!#$)

trigram 2 words as history
!
!

"

p(𝑤!|𝑤!#%𝑤!#$)
𝑝 𝑤!|𝑤!#%𝑤!#$
=
𝑐𝑜𝑢𝑛𝑡(𝑤!#%𝑤!#$𝑤!)
𝑐𝑜𝑢𝑛𝑡(𝑤!#%𝑤!#$)

4-gram 3 words as history
!
!

"

p(𝑤!|𝑤!#&𝑤!#%𝑤!#$)
𝑝 𝑤!|𝑤!#&𝑤!#%𝑤!#$
=
𝑐𝑜𝑢𝑛𝑡(𝑤!#&𝑤!#%𝑤!#$𝑤!)
𝑐𝑜𝑢𝑛𝑡(𝑤!#&𝑤!#&𝑤!#$)



When we have sparse statistics:

Steal probability mass to generalize better

P(w | denied the)
3 allegations
2 reports
1 claims
1 request
7 total

P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other
7 total
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Approximating Shakespeare

10 CHAPTER 4 • N-GRAMS

Imagine all the words of English covering the probability space between 0 and 1,
each word covering an interval proportional to its frequency. We choose a random
value between 0 and 1 and print the word whose interval includes this chosen value.
We continue choosing random numbers and generating words until we randomly
generate the sentence-final token </s>. We can use the same technique to generate
bigrams by first generating a random bigram that starts with <s> (according to its
bigram probability), then choosing a random bigram to follow (again, according to
its bigram probability), and so on.

To give an intuition for the increasing power of higher-order N-grams, Fig. 4.3
shows random sentences generated from unigram, bigram, trigram, and 4-gram
models trained on Shakespeare’s works.

1
–To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have

gram –Hill he late speaks; or! a more to leg less first you enter

2
–Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.

gram –What means, sir. I confess she? then all sorts, he is trim, captain.

3
–Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
’tis done.

gram –This shall forbid it should be branded, if renown made it empty.

4
–King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;

gram –It cannot be but so.
Figure 4.3 Eight sentences randomly generated from four N-grams computed from Shakespeare’s works. All
characters were mapped to lower-case and punctuation marks were treated as words. Output is hand-corrected
for capitalization to improve readability.

The longer the context on which we train the model, the more coherent the sen-
tences. In the unigram sentences, there is no coherent relation between words or any
sentence-final punctuation. The bigram sentences have some local word-to-word
coherence (especially if we consider that punctuation counts as a word). The tri-
gram and 4-gram sentences are beginning to look a lot like Shakespeare. Indeed, a
careful investigation of the 4-gram sentences shows that they look a little too much
like Shakespeare. The words It cannot be but so are directly from King John. This
is because, not to put the knock on Shakespeare, his oeuvre is not very large as
corpora go (N = 884,647,V = 29,066), and our N-gram probability matrices are
ridiculously sparse. There are V 2 = 844,000,000 possible bigrams alone, and the
number of possible 4-grams is V 4 = 7⇥1017. Thus, once the generator has chosen
the first 4-gram (It cannot be but), there are only five possible continuations (that, I,
he, thou, and so); indeed, for many 4-grams, there is only one continuation.

To get an idea of the dependence of a grammar on its training set, let’s look at an
N-gram grammar trained on a completely different corpus: the Wall Street Journal
(WSJ) newspaper. Shakespeare and the Wall Street Journal are both English, so
we might expect some overlap between our N-grams for the two genres. Fig. 4.4
shows sentences generated by unigram, bigram, and trigram grammars trained on
40 million words from WSJ.

Compare these examples to the pseudo-Shakespeare in Fig. 4.3. While superfi-
cially they both seem to model “English-like sentences”, there is obviously no over-



Distributional 
Hypothesis

If we consider optometrist and eye-doctor we find that, as our 
corpus of utterances grows, these two occur in almost the 
same environments.  In contrast, there are many sentence 
environments in which optometrist occurs but lawyer does 
not...

It is a question of the relative frequency of such environments, 
and of what we will obtain if we ask an informant to substitute 
any word he wishes for optometrist (not asking what words 
have the same meaning).  

These and similar tests all measure the probability of particular 
environments occurring with particular elements...  If A and B 
have almost identical environments we say that they are 
synonyms.
–Zellig Harris (1954)



D1 D2 D3 D4 D5

abandon

abdicate

abhor

academic

…

zygodactyl

zymurgy

Term-Document Matrix

We can measure
how similar two 
documents are
by comparing their
column vectors



D1 D2 D3 D4 D5

abandon

abdicate

abhor

academic

…

zygodactyl

zymurgy

Term-Document Matrix

We can measure 
word similarity by 
comparing two 
row vectors



Sparse 
Representations

Term-Document Matrices are 
◦ long (length |V|= 20,000 to 50,000)
◦ sparse (most elements are zero)



Word 
embeddings

We shifted vectors which are
◦ short (length 50-1000)
◦ dense (most elements are non-zero)
◦ learned representations (not just counts)

19



Word2Vec Training
Training sentence:
... lemon, a tablespoon of apricot jam   a pinch ... 

c1              c2     t c3    c4

Training data: input/output pairs centering 
on apricot
Assume a +/- 2 word window

4/29/20 20



Word2Vec Training
Training sentence:
... lemon, a tablespoon of apricot jam   a pinch ... 

c1              c2     t c3    c4

4/29/20 21

6.7 • WORD2VEC 17

Equation 6.19 give us the probability for one word, but we need to take account
of the multiple context words in the window. Skip-gram makes the strong but very
useful simplifying assumption that all context words are independent, allowing us to
just multiply their probabilities:

P(+|t,c1:k) =
kY

i=1

1
1+ e�t·ci

(6.21)

logP(+|t,c1:k) =
kX

i=1

log
1

1+ e�t·ci
(6.22)

In summary, skip-gram trains a probabilistic classifier that, given a test target
word t and its context window of k words c1:k, assigns a probability based on how
similar this context window is to the target word. The probability is based on apply-
ing the logistic (sigmoid) function to the dot product of the embeddings of the target
word with each context word. We could thus compute this probability if only we
had embeddings for each word target and context word in the vocabulary. Let’s now
turn to learning these embeddings (which is the real goal of training this classifier in
the first place).

6.7.2 Learning skip-gram embeddings
Word2vec learns embeddings by starting with an initial set of embedding vectors
and then iteratively shifting the embedding of each word w to be more like the em-
beddings of words that occur nearby in texts, and less like the embeddings of words
that don’t occur nearby.

Let’s start by considering a single piece of the training data, from the sentence
above:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4

This example has a target word t (apricot), and 4 context words in the L = ±2
window, resulting in 4 positive training instances (on the left below):

positive examples +
t c
apricot tablespoon
apricot of
apricot preserves
apricot or

negative examples -
t c t c
apricot aardvark apricot twelve
apricot puddle apricot hello
apricot where apricot dear
apricot coaxial apricot forever

For training a binary classifier we also need negative examples, and in fact skip-
gram uses more negative examples than positive examples, the ratio set by a param-
eter k. So for each of these (t,c) training instances we’ll create k negative samples,
each consisting of the target t plus a ‘noise word’. A noise word is a random word
from the lexicon, constrained not to be the target word t. The right above shows the
setting where k = 2, so we’ll have 2 negative examples in the negative training set
� for each positive example t,c.

The noise words are chosen according to their weighted unigram frequency
pa(w), where a is a weight. If we were sampling according to unweighted fre-
quency p(w), it would mean that with unigram probability p(“the”) we would choose

For each positive example, 
we'll create k negative 
examples.
Using noise words
Any random word that isn't t



k-Nearest Neighbors



Word Analogies
a:a∗ as b:b∗.  b∗ is a hidden vector.   

b∗ should be similar to the vector b − a + a∗
vector(‘king’) - vector(‘man’) + vector(‘woman’) ≈ vector(‘queen’)

23

man

woman

king

queen
-man

+woman



Word Analogies
a:a∗ as b:b∗.  b∗ is a hidden vector.   

b∗ should be similar to the vector b − a + a∗
vector(‘king’) - vector(‘man’) + vector(‘woman’) ≈ vector(‘queen’)
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Magnitude: Python Toolkit for 
Manipulating Embeddings



Monolingual Word 
Embeddings

cat
dog

Baltimore

Monday
Friday



Monolingual Word 
Embeddings

Baltimore

senen jumat

kucing
anjing

cat
dog

Baltimore

Monday
Friday



Bilingual Word Embeddings

cat
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Projecting Vector Space 
Models

29

crecer

rápidamente

economías
planeta

empleo
extranjero

crecer

rápidamente

economías
planeta

empleo
extranjero

1

crecer

rápidamente

economías
planeta

empleo
extranjero

1

1

crecer

rápidamente

economías
planeta

empleo
extranjero

2

1
... este  número podría   crecer   muy rápidamente  si no se modifica ...

... nuestras  economías a   crecer   y desarrollarse  de forma saludable ...

... que  nos permitirá   crecer   rápidamente cuando  el contexto ...



Projecting Vector Space 
Models
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Word Embeddings
Instead of high dimensional vector space models used by Rapp and 
others in the past, we use low-dimensional word embeddings.

31



Learning Bilingual Embeddings
mapping function W 

32



Use in Historical Linguistics

~30 million books, 1850-1990, Google Books data



Use in Historical Linguistics

~30 million books, 1850-1990, Google Books data



Uses in Social Science
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Table 3. Top Asian (vs. White) adjectives in 1910, 1950, and 1990
by relative norm difference in the COHA embedding

1910 1950 1990

Irresponsible Disorganized Inhibited
Envious Outrageous Passive
Barbaric Pompous Dissolute
Aggressive Unstable Haughty
Transparent Effeminate Complacent
Monstrous Unprincipled Forceful
Hateful Venomous Fixed
Cruel Disobedient Active
Greedy Predatory Sensitive
Bizarre Boisterous Hearty

qualitatively through the results in the snapshot analysis for gen-
der, which replicates prior work, and quantitatively as the metrics
correlate highly with one another, as shown in SI Appendix,
section A.5.

Furthermore, we primarily use linear models to fit the relation-
ship between embedding bias and various external metrics; how-
ever, the true relationships may be nonlinear and warrant further
study. This concern is especially salient when studying ethnic
stereotypes over time in the United States, as immigration dras-
tically shifts the size of each group as a percentage of the popu-
lation, which may interact with stereotypes and occupation per-
centages. However, the models are sufficient to show consistency
in the relationships between embedding bias and external metrics
across datasets over time. Further, the results do not qualitatively
change when, for example, population logit proportion instead
of raw percentage difference is used, as in ref. 44; we reproduce
our primary figures with such a transformation in SI Appendix,
section A.6.

Another potential concern may be the dependency of our
results on the specific word lists used and that the recall of
our methods in capturing human biases may not be adequate.
We take extensive care to reproduce similar results with other
word lists and types of measurements to demonstrate recall. For
example, in SI Appendix, section B.1, we repeat the static occu-
pation analysis using only professional occupations and repro-
duce an identical figure to Fig. 1 in SI Appendix, section B.1.
Furthermore, the plots themselves contain bootstrapped confi-
dence intervals; i.e., the coefficients for random subsets of the
occupations/adjectives and the intervals are tight. Similarly, for
adjectives, we use two different lists: one list from refs. 6 and 7
for which we have labeled stereotype scores and then a larger
one for the rest of the analysis where such scores are not needed.
We note that we do not tune either the embeddings or the word
lists, instead opting for the largest/most general publicly avail-
able data. For reproducibility, we share our code and all word
lists in a repository. That our methods replicate across many dif-
ferent embeddings and types of biases measured suggests their
generalizability.

A common challenge in historical analysis is that the written
text in, say 1910, may not completely reflect the popular social
attitude of that time. This is an important caveat to consider in
interpreting the results of the embeddings trained on these ear-
lier text corpora. The fact that the embedding bias for gender
and ethnic groups does track with census proportion is a positive
control that the embedding is still capturing meaningful patterns
despite possible limitations in the training text. Even this con-
trol may be limited in that the census proportion does not fully
capture gender or ethnic associations, even in the present day.
However, the written text does serve as a window into the atti-
tudes of the day as expressed in popular culture, and this work
allows for a more systematic study of such text.

Another limitation of our current approach is that all of the
embeddings used are fully “black box,” where the dimensions
have no inherent meaning. To provide a more causal explana-
tion of how the stereotypes appear in language, and to under-
stand how they function, future work can leverage more recent
embedding models in which certain dimensions are designed to
capture various aspects of language, such as the polarity of a
word or its parts of speech (45). Similarly, structural proper-
ties of words—beyond their census information or human-rated
stereotypes—can be studied in the context of these dimensions.
One can also leverage recent Bayesian embeddings models and
train more fine-grained embeddings over time, rather than a sep-
arate embedding per decade as done in this work (46, 47). These
approaches can be used in future work.

We view the main contribution of our work as introducing
and validating a framework for exploring the temporal dynam-
ics of stereotypes through the lens of word embeddings. Our
framework enables the computation of simple but quantitative
measures of bias as well as easy visualizations. It is important to
note that our goal in Quantifying Gender Stereotypes and Quanti-

fying Ethnic Stereotypes is quantitative exploratory analysis rather
than pinning down specific causal models of how certain stereo-
types arise or develop, although the analysis in Occupational

Stereotypes Beyond Census Data suggests that common language
is more biased than one would expect based on external, objec-
tive metrics. We believe our approach sharpens the analysis of
large cultural shifts in US history; e.g., the women’s movement
of the 1960s correlates with a sharp shift in the encoding matrix
(Fig. 4) as well as changes in the biases associated with spe-
cific occupations and gender-biased adjectives (e.g., hysterical vs.
emotional).

In standard quantitative social science, machine learning is
used as a tool to analyze data. Our work shows how the artifacts
of machine learning (word embeddings here) can themselves
be interesting objects of sociological analysis. We believe this
paradigm shift can lead to many fruitful studies.

Materials and Methods

In this section we describe the datasets, embeddings, and word lists used,
as well as how bias is quantified. More detail, including descriptions of
additional embeddings and the full word lists, are in SI Appendix, section
A. All of our data and code are available on GitHub (https://github.com/
nikhgarg/EmbeddingDynamicStereotypes), and we link to external data
sources as appropriate.

Embeddings. This work uses several pretrained word embeddings publicly
available online; refer to the respective sources for in-depth discussion of
their training parameters. These embeddings are among the most com-
monly used English embeddings, vary in the datasets on which they were

Fig. 6. Asian bias score over time for words related to outsiders in COHA
data. The shaded region is the bootstrap SE interval.

Garg et al. PNAS Latest Articles | 7 of 10

Change in association of Chinese names with adjectives 
framed as "othering" (barbaric, monstrous, bizarre)



What should a 
semantic model be 
able to do?
GOALS FOR DISTRIBUTIONAL SEMANTICS



Goal: Word Sense



Goal: Hypernomy
One goal of for a semantic model is to represent the relationship 
between words.  A classic relation is hypernomy which describes when 
one word (the hypernym) is more general than the other word (the 
hyponym).



Goal: Compositionality
Language is productive. We can understand completely new sentences, 
as long as we know each word in the sentence.  One goal for a semantic 
model is to be able to derive the meaning of a sentence from its parts, 
so that we can generalize to new combinations.  This is known as 
compositionality. 



Goal: Grounding
Many experimental studies in language acquisition suggest that word 
meaning arises not only from exposure to the linguistic environment 
but also from our interaction with the physical world. 

Use collections of documents that contain pictures

(a) (b) (c)

Figure 1: Image partitioned into regions of varying granularity using (a) the normalized cut image segmentation algo-
rithm, (b) uniform grid segmentation, and (c) the SIFT point detector.

(11 � 13) regions, whereas an average of 240 points
(depending on the image content) are detected. A
non-sparse feature representation is critical in our
case, since we usually do not have more than one
image per document.

We compute local image descriptors using the
the Scale Invariant Feature Transform (SIFT) algo-
rithm (Lowe, 1999). Importantly, SIFT descriptors
are designed to be invariant to small shifts in posi-
tion, changes in illumination, noise, and viewpoint
and can be used to perform reliable matching be-
tween different views of an object or scene (Mikola-
jczyk and Schmid, 2003; Lowe, 1999). We further
quantize the SIFT descriptors using the K-means
clustering algorithm to obtain a discrete set of vi-
sual terms (visiterms) which form our visual vo-
cabulary VocV . Each entry in this vocabulary stands
for a group of image regions which are similar
in content or appearance and assumed to origi-
nate from similar objects. More formally, each im-
age I is expressed in a bag-of-words format vector,
[v1,v2, ...,vL], where vi = n only if I has n regions
labeled with vi. Since both images and documents
in our corpus are now represented as bags-of-words,
and since we assume that the visual and textual
modalities express the same content, we can go a
step further and represent the document and its as-
sociated image as a mixture of verbal and visual
words dMix. We will then learn a topic model on this
concatenated representation of visual and textual in-
formation.

3.2 Topic Model

Latent Dirichlet Allocation (Blei et al., 2003; Grif-
fiths et al., 2007) is a probabilistic model of text gen-

eration. LDA models each document using a mix-
ture over K topics, which are in turn characterized
as distributions over words. The words in the docu-
ment are generated by repeatedly sampling a topic
according to the topic distribution, and selecting a
word given the chosen topic. Under this framework,
the problem of meaning representation is expressed
as one of statistical inference: given some data —
textual and visual words — infer the latent structure
from which it was generated. Word meaning is thus
modeled as a probability distribution over a set of
latent multimodal topics.

LDA can be represented as a three level hierarchi-
cal Bayesian model. Given a corpus consisting of M

documents, the generative process for a document d

is as follows. We first draw the mixing proportion
over topics �d from a Dirichlet prior with parame-
ters �. Next, for each of the Nd words wdn in doc-
ument d, a topic zdn is first drawn from a multino-
mial distribution with parameters �dn. The probabil-
ity of a word token w taking on value i given that
topic z = j is parametrized using a matrix � with
bi j = p(w = i|z = j). Integrating out �d’s and zdn’s,
gives P(D|�,�), the probability of a corpus (or doc-
ument collection):

M

�
d=1

Z
P(�d |�)

�
Nd

�
n=1

�
zdn

P(zdn|�d)P(wdn|zdn,�)

�
d�d

The central computational problem in topic
modeling is to compute the posterior distribu-
tion P(�,z|w,�,�) of the hidden variables given
a document w = (w1,w2, . . . ,wN). Although this
distribution is intractable in general, a variety of ap-
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A semantic model should 
1. Handle words with multiple senses (polysemy) and encode 

relationships like hyponym between words/word senses

2. Robustly handle vagueness (situations when it is unclear whether an 
entity is a referent of a concept)

3. Should be able to be combined word representations to encode the 
meanings of sentences (compositionally) 

4. Capture how word meaning depends on context. 

5. Support logical notions of truth and entailment

6. Generalize to new situations (connecting concepts and referents)

7. Capture how language relates to the world via sensory perception 
(grounding)
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Figure 7.12 A simplified view of a feedforward neural language model moving through a text. At each
timestep t the network takes the 3 context words, converts each to a d-dimensional embedding, and concatenates
the 3 embeddings together to get the 1⇥Nd unit input layer x for the network. These units are multiplied by
a weight matrix W and bias vector b and then an activation function to produce a hidden layer h, which is then
multiplied by another weight matrix U . (For graphic simplicity we don’t show b in this and future pictures.)
Finally, a softmax output layer predicts at each node i the probability that the next word wt will be vocabulary
word Vi. (This picture is simplified because it assumes we just look up in an embedding dictionary E the
d-dimensional embedding vector for each word, precomputed by an algorithm like word2vec.)

classification, or translation, or parsing) places strong constraints on what makes a
good representation.

Let’s therefore show an architecture that allows the embeddings to be learned.
To do this, we’ll add an extra layer to the network, and propagate the error all the
way back to the embedding vectors, starting with embeddings with random values
and slowly moving toward sensible representations.

For this to work at the input layer, instead of pre-trained embeddings, we’re
going to represent each of the N previous words as a one-hot vector of length |V |, i.e.,
with one dimension for each word in the vocabulary. A one-hot vector is a vectorone-hot vector
that has one element equal to 1—in the dimension corresponding to that word’s
index in the vocabulary— while all the other elements are set to zero.

Thus in a one-hot representation for the word “toothpaste”, supposing it happens
to have index 5 in the vocabulary, x5 is one and and xi = 0 8i 6= 5, as shown here:

[0 0 0 0 1 0 0 ... 0 0 0 0]
1 2 3 4 5 6 7 ... ... |V|

Fig. 7.13 shows the additional layers needed to learn the embeddings during LM
training. Here the N=3 context words are represented as 3 one-hot vectors, fully
connected to the embedding layer via 3 instantiations of the embedding matrix E.
Note that we don’t want to learn separate weight matrices for mapping each of the 3
previous words to the projection layer, we want one single embedding dictionary E
that’s shared among these three. That’s because over time, many different words will
appear as wt�2 or wt�1, and we’d like to just represent each word with one vector,
whichever context position it appears in. The embedding weight matrix E thus has

Wt-1)



Recurrent Neural Networks
A recurrent neural network (RNN) is any network that contains a cycle 
within its network. 

In such networks the value of a unit can be dependent on earlier 
outputs as an input. 

RNNs have proven extremely effective when applied to NLP.
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Figure 9.5 A simple recurrent neural network shown unrolled in time. Network layers are copied for each
time step, while the weights U , V and W are shared in common across all time steps.

weights from the input layer to the hidden layer, U , the weights from the previous
hidden layer to the current hidden layer, and finally V , the weights from the hidden
layer to the output layer.

Before going on, let’s first review some of the notation that we introduced in
Chapter 7. Assuming a network with an input layer x and a non-linear activation
function g, a

[i] refers to the activation value from a layer i, which is the result of
applying g to z

[i], the weighted sum of the inputs to that layer.
Fig. 9.5 illustrates two considerations that we didn’t have to worry about with

backpropagation in feedforward networks. First, to compute the loss function for
the output at time t we need the hidden layer from time t � 1. Second, the hidden
layer at time t influences both the output at time t and the hidden layer at time t +1
(and hence the output and loss at t + 1). It follows from this that to assess the error
accruing to ht , we’ll need to know its influence on both the current output as well as

the ones that follow.
Consider the situation where we are examining an input/output pair at time 2 as

shown in Fig. 9.6. What do we need to compute the gradients required to update
the weights U , V , and W here? Let’s start by reviewing how we compute the gra-
dients required to update V since this computation is unchanged from feedforward
networks. To review from Chapter 7, we need to compute the derivative of the loss
function L with respect to the weights V . However, since the loss is not expressed
directly in terms of the weights, we apply the chain rule to get there indirectly.

∂L

∂V
=

∂L

∂a

∂a

∂ z

∂ z

∂V

The first term on the right is the derivative of the loss function with respect to
the network output, a. The second term is the derivative of the network output with
respect to the intermediate network activation z, which is a function of the activation



Sequence Classifiers
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This approach is usually implemented by adding a CRF (Lample et al., 2016) layer
as the final layer of recurrent network.

9.2.3 RNNs for Sequence Classification
Another use of RNNs is to classify entire sequences rather than the tokens within
them. We’ve already encountered this task in Chapter 4 with our discussion of sen-
timent analysis. Other examples include document-level topic classification, spam
detection, message routing for customer service applications, and deception detec-
tion. In all of these applications, sequences of text are classified as belonging to one
of a small number of categories.

To apply RNNs in this setting, the text to be classified is passed through the RNN
a word at a time generating a new hidden layer at each time step. The hidden layer
for the final element of the text, hn, is taken to constitute a compressed representation
of the entire sequence. In the simplest approach to classification, hn, serves as the
input to a subsequent feedforward network that chooses a class via a softmax over
the possible classes. Fig. 9.9 illustrates this approach.

x1 x2 x3 xn

RNN

hn

Softmax

Figure 9.9 Sequence classification using a simple RNN combined with a feedforward net-
work. The final hidden state from the RNN is used as the input to a feedforward network that
performs the classification.

Note that in this approach there are no intermediate outputs for the words in
the sequence preceding the last element. Therefore, there are no loss terms associ-
ated with those elements. Instead, the loss function used to train the weights in the
network is based entirely on the final text classification task. Specifically, the out-
put from the softmax output from the feedforward classifier together with a cross-
entropy loss drives the training. The error signal from the classification is backprop-
agated all the way through the weights in the feedforward classifier through, to its
input, and then through to the three sets of weights in the RNN as described earlier
in Section 9.1.2. This combination of a simple recurrent network with a feedforward
classifier is our first example of a deep neural network. And the training regimen
that uses the loss from a downstream application to adjust the weights all the way
through the network is referred to as end-to-end training.end-to-end

training



Sequence Models
A sequence model or sequence classifier is a model 
whose job is to assign a label or class to each unit in a 
sequence, thus mapping a sequence of observations to 
a sequence of labels. 

Noun
Verb
Pronoun
Preposition

Adverb
Conjunction
Adjective
Interjection



Tag Description Example Tag Description Example
CC coordinating  

conjunction
and, but, or SYM symbol +, %, &

CD cardinal number one, two TO “to” to

DT determiner a, the UH interjection ah, oops

EX existential “there” there VB verb base form eat

FW foreign word mea culpa VBD verb past tense ate

IN proposition/sub-conj of, in, by VBG verb gerund eating

JJ adjective yellow VBN verb past participle eaten

JJR comparative 
adjective

bigger VBP verb non-3sg pres eat

JJS superlative adjective wildest VBZ verb 3sg pres eats

LS list item marker 1, 2, One WDT wh-determiner which, that

MD modal can, should WP wh-pronoun what, who

NN noun, singular or 
mass

llama WP$ possessive wh- whose

NNS noun, plural llamas WRB wh-adverb how, where

NNP proper noun, sing. IBM $ dollar sign $

NNPS proper noun, plural Carolinas # pound sign #

PDT predeterminer all, both “ left quote ‘ or “

POS possessive ending ‘s ” right quote ’ or ”

PRP personal pronoun I, you, we ( left parenthesis [, (, {, <

PRP$ possessive pronoun your, one’s ) right parenthesis ], ), }, >



POS Tagging
Words are ambiguous, so tagging must resolve disambiguate.

The amount of tag ambiguity for word types in the Brown and WSJ corpora from 
the Treebank-3 (45-tag) tagging. These statistics include punctuation as words, 
and assume words are kept in their original case.

Types: WSJ Brown

Unambiguous (1 tag) 44,432 (86%) 45,799 (85%)

Ambiguous (2+ tags) 7,025 (14%) 8,050 (15%)

Tokens:

Unambiguous (1 tag) 577,421 (45%) 384,349 (33%)

Ambiguous (2+ tags) 711,780 (55%) 786,646 (67%)



Most frequent class baseline
Many words are easy to disambiguate, because their 
different tags aren’t equally likely. 

Simplistic baseline for POS tagging: given an ambiguous 
word, choose the tag which is most frequent in the 
training corpus. 

Most Frequent Class Baseline: Always compare a 
classifier against a baseline at least as good as the most 
frequent class baseline (assigning each token to the 
class it occurred in most often in the training set). 



Tag Sequences
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In a

<s>

RNN

hole

In a hole

?Sampled Word

Softmax

Embedding

Input Word

Figure 9.7 Autoregressive generation with an RNN-based neural language model.

task is part-of-speech tagging, discussed in detail in Chapter 8. In an RNN approach
to POS tagging, inputs are word embeddings and the outputs are tag probabilities
generated by a softmax layer over the tagset, as illustrated in Fig. 9.8.

In this figure, the inputs at each time step are pre-trained word embeddings cor-
responding to the input tokens. The RNN block is an abstraction that represents
an unrolled simple recurrent network consisting of an input layer, hidden layer, and
output layer at each time step, as well as the shared U , V and W weight matrices that
comprise the network. The outputs of the network at each time step represent the
distribution over the POS tagset generated by a softmax layer.

To generate a tag sequence for a given input, we can run forward inference over
the input sequence and select the most likely tag from the softmax at each step. Since
we’re using a softmax layer to generate the probability distribution over the output

Janet will back

RNN

the bill

Figure 9.8 Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over
the part-of-speech tags as output at each time step.



Stacked RNNs
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9.3 Deep Networks: Stacked and Bidirectional RNNs

As suggested by the sequence classification architecture shown in Fig. 9.9, recurrent
networks are quite flexible. By combining the feedforward nature of unrolled com-
putational graphs with vectors as common inputs and outputs, complex networks
can be treated as modules that can be combined in creative ways. This section intro-
duces two of the more common network architectures used in language processing
with RNNs.

9.3.1 Stacked RNNs
In our examples thus far, the inputs to our RNNs have consisted of sequences of
word or character embeddings (vectors) and the outputs have been vectors useful for
predicting words, tags or sequence labels. However, nothing prevents us from using
the entire sequence of outputs from one RNN as an input sequence to another one.
Stacked RNNs consist of multiple networks where the output of one layer serves asStacked RNNs
the input to a subsequent layer, as shown in Fig. 9.10.

y1 y2 y3
yn

x1 x2 x3 xn

RNN 1

RNN 3

RNN 2

Figure 9.10 Stacked recurrent networks. The output of a lower level serves as the input to
higher levels with the output of the last network serving as the final output.

It has been demonstrated across numerous tasks that stacked RNNs can outper-
form single-layer networks. One reason for this success has to do with the network’s
ability to induce representations at differing levels of abstraction across layers. Just
as the early stages of the human visual system detect edges that are then used for
finding larger regions and shapes, the initial layers of stacked networks can induce
representations that serve as useful abstractions for further layers — representations
that might prove difficult to induce in a single RNN.

The optimal number of stacked RNNs is specific to each application and to each
training set. However, as the number of stacks is increased the training costs rise
quickly.
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RNN 2 (Right to Left)
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Figure 9.11 A bidirectional RNN. Separate models are trained in the forward and backward
directions with the output of each model at each time point concatenated to represent the state
of affairs at that point in time. The box wrapped around the forward and backward network
emphasizes the modular nature of this architecture.

x1 x2 x3 xn

RNN 1 (Left to Right)

RNN 2 (Right to Left)

+

hn_forw

h1_back

Softmax

Figure 9.12 A bidirectional RNN for sequence classification. The final hidden units from
the forward and backward passes are combined to represent the entire sequence. This com-
bined representation serves as input to the subsequent classifier.

access to the entire preceding sequence, the information encoded in hidden states
tends to be fairly local, more relevant to the most recent parts of the input sequence
and recent decisions. It is often the case, however, that distant information is critical
to many language applications. To see this, consider the following example in the
context of language modeling.

(9.15) The flights the airline was cancelling were full.



Bidirectional RNNs for 
sequence classification
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access to the entire preceding sequence, the information encoded in hidden states
tends to be fairly local, more relevant to the most recent parts of the input sequence
and recent decisions. It is often the case, however, that distant information is critical
to many language applications. To see this, consider the following example in the
context of language modeling.

(9.15) The flights the airline was cancelling were full.



Syntactic Parsing
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Grammar Lexicon

S ! NP VP Det ! that | this | the | a
S ! Aux NP VP Noun ! book | flight | meal | money
S ! VP Verb ! book | include | prefer
NP ! Pronoun Pronoun ! I | she | me
NP ! Proper-Noun Proper-Noun ! Houston | NWA
NP ! Det Nominal Aux ! does
Nominal ! Noun Preposition ! from | to | on | near | through
Nominal ! Nominal Noun
Nominal ! Nominal PP
VP ! Verb
VP ! Verb NP
VP ! Verb NP PP
VP ! Verb PP
VP ! VP PP
PP ! Preposition NP
Figure 13.1 The L1 miniature English grammar and lexicon.
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Figure 13.2 Two parse trees for an ambiguous sentence. The parse on the left corresponds to the humorous
reading in which the elephant is in the pajamas, the parse on the right corresponds to the reading in which
Captain Spaulding did the shooting in his pajamas.

Crackers is ambiguous because the phrase in my pajamas can be part of the NP
headed by elephant or a part of the verb phrase headed by shot. Figure 13.2 illus-
trates these two analyses of Marx’s line using rules from L1.

Structural ambiguity, appropriately enough, comes in many forms. Two common
kinds of ambiguity are attachment ambiguity and coordination ambiguity.

A sentence has an attachment ambiguity if a particular constituent can be at-attachment

ambiguity

tached to the parse tree at more than one place. The Groucho Marx sentence is
an example of PP-attachment ambiguity. Various kinds of adverbial phrases are
also subject to this kind of ambiguity. For instance, in the following example the
gerundive-VP flying to Paris can be part of a gerundive sentence whose subject is
the Eiffel Tower or it can be an adjunct modifying the VP headed by saw:

(13.1) We saw the Eiffel Tower flying to Paris.



Ambiguity
Ambiguity can arise because of words with multiple senses or POS tags.  
Many kinds of ambiguity are also structural.  



Dependency Grammars
Dependency grammars depict the syntactic structure of 
sentences solely in terms of the words in a sentence and an 
associated set of directed head-dependent grammatical 
relations that hold among these words.



Dependency – based Constituent– based 



Open Information Extraction
Unsupervised relation extraction
Find all strings of words that satisfy the tripe 
relation.

United has a hub in Chicago, which is the headquarters of 
United Continental Holdings.
r1: <United, has a hub in, Chicago>
r2: <Chicago, is the headquarters of, United Continental 
Holdings>



Template Filling
Citing high fuel prices, United Airlines said Friday it has increased
fares by $6 per round trip on flights to some cities also served by
lower cost carriers. American Airlines, a unit of AMR Corp.,
immediately matched the move, spokesman Tim Wagner said.
United, a unit of UAL Corp., said the increase took effect
Thursday and applies to most routes where it competes against
discount carriers, such as Chicago to Dallas and Denver to San
Francisco.



Temporal Expression Extraction

Lexical triggers for temporal expressions:

• Temporal expression recognition
• Temporal normalization
• mapping a temporal expression to either 

normalization a specific point in time or to a duration



Event Extraction

Events can be classified as actions, states, reporting
events, perception events, etc. The aspect, tense, 
and modality of each event also needs to be 
extracted. 



Temporal ordering of events
Delta Air Lines earnings soared 33% to a record in 
the fiscal first quarter, bucking the industry trend 
toward declining profits.

• Soaringe1 is included in the fiscal first quartert58
• Soaringe1 is simultaneous with the buckinge3
•Declininge4 includes soaringe1





Desirable Properties for 
Meaning Representations

1. Verifiability – compare some meaning representation (MR) to a 
representation in a knowledge base (KB). 

2. Unambiguous Representations – each ambiguous natural language 
meaning corresponds to a separate MR

3. Canonical Forms – paraphrases are collapsed to one MR

4. Make Inferences – draw valid conclusions based on the MR of 
inputs and its background knowledge in KB

5. Match variables – variables can be replaced by some object in the 
KB so an entire proposition will then match 



Unambiguous representation
I want to eat someplace that’s near Penn’s campus.



Model-Theoretic Semantics
A model allows us to bridge the gap between a formal representation 
and the world.  The model stands in for a particular state of affairs in the 
world. 

The domain of a model is the set of objects that are being represented.  
Each distinct thing (person, restaurant, cuisine) corresponds to a unique 
element in the domain

Properties of objects (like whether a restaurant is expensive) in a model 
correspond to sets of objects.  

Relations between object (like whether a restaurant serves a cuisine) are 
are sets of tuples. 
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Domain D = {a,b,c,d,e, f ,g,h, i, j}
Matthew, Franco, Katie and Caroline a,b,c,d
Frasca, Med, Rio e, f ,g
Italian, Mexican, Eclectic h, i, j

Properties

Noisy Noisy = {e, f ,g}
Frasca, Med, and Rio are noisy

Relations

Likes Likes = {ha, f i,hc, f i,hc,gi,hb,ei,hd, f i,hd,gi}
Matthew likes the Med
Katie likes the Med and Rio
Franco likes Frasca
Caroline likes the Med and Rio

Serves Serves = {h f , ji,hg, ii,he,hi}
Med serves eclectic
Rio serves Mexican
Frasca serves Italian

Figure 16.2 A model of the restaurant world.

presence of the tuple ha,ei. If, as it is in this case, the tuple is present in the model,
then we can conclude that Matthew likes Frasca is true; if it isn’t then we can’t.

This is all pretty straightforward—we’re using sets and operations on sets to
ground the expressions in our meaning representations. Of course, the more inter-
esting part comes when we consider more complex examples such as the following:

(16.13) Katie likes the Rio and Matthew likes the Med.
(16.14) Katie and Caroline like the same restaurants.
(16.15) Franco likes noisy, expensive restaurants.
(16.16) Not everybody likes Frasca.

Our simple scheme for grounding the meaning of representations is not adequate
for examples such as these. Plausible meaning representations for these examples
will not map directly to individual entities, properties, or relations. Instead, they
involve complications such as conjunctions, equality, quantified variables, and nega-
tions. To assess whether these statements are consistent with our model, we’ll have
to tear them apart, assess the parts, and then determine the meaning of the whole
from the meaning of the parts.

Consider the first example above. A meaning representation for this example
will include two distinct propositions expressing the individual patron’s preferences,
conjoined with some kind of implicit or explicit conjunction operator. Our model
doesn’t have a relation that encodes pairwise preferences for all of the patrons and
restaurants in our model, nor does it need to. We know from our model that Matthew
likes the Med and separately that Katie likes the Rio (that is, the tuples ha, f i and
hc,gi are members of the set denoted by the Likes relation). All we really need to
know is how to deal with the semantics of the conjunction operator. If we assume
the simplest possible semantics for the English word and, the whole statement is
true if it is the case that each of the components is true in our model. In this case,
both components are true since the appropriate tuples are present and therefore the
sentence as a whole is true.

What we’ve done with this example is provide a truth-conditional semantics
truth-

conditional
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Katie likes Rio
Katie à c
Rio à g

likes à Likes

<c,g> ∈ Likes 
so Katie likes Rio

is True



First-Order Logic
FOL is a meaning representation language that satisfies the desirable 
qualities that we outlined. It provides a computational basis for 
verifiability and inference.

It doesn’t have many requirements other than the represented world 
consists of objects, properties of objects, and relations among objects.



Logical Connectives
We can conjoin formula with logical connectives like and (∧), or (∨), not
(¬), and implies (⇒)
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relations out in the external world being modeled. We can accomplish this by em-
ploying the model-theoretic approach introduced in Section 16.2. Recall that this
approach employs simple set-theoretic notions to provide a truth-conditional map-
ping from the expressions in a meaning representation to the state of affairs being
modeled. We can apply this approach to FOL by going through all the elements in
Fig. 16.3 on page 7 and specifying how each should be accounted for.

We can start by asserting that the objects in our world, FOL terms, denote ele-
ments in a domain, and asserting that atomic formulas are captured either as sets of
domain elements for properties, or as sets of tuples of elements for relations. As an
example, consider the following:

(16.34) Centro is near Bacaro.

Capturing the meaning of this example in FOL involves identifying the Terms
and Predicates that correspond to the various grammatical elements in the sentence
and creating logical formulas that capture the relations implied by the words and
syntax of the sentence. For this example, such an effort might yield something like
the following:

Near(Centro,Bacaro) (16.35)

The meaning of this logical formula is based on whether the domain elements de-
noted by the terms Centro and Bacaro are contained among the tuples denoted by
the relation denoted by the predicate Near in the current model.

The interpretation of formulas involving logical connectives is based on the
meanings of the components in the formulas combined with the meanings of the
connectives they contain. Figure 16.4 gives interpretations for each of the logical
operators shown in Fig. 16.3.

P Q ¬ P P ^ Q P _ Q P =) Q
False False True False False True
False True True False True True
True False False False True False
True True False True True True

Figure 16.4 Truth table giving the semantics of the various logical connectives.

The semantics of the ^ (and) and ¬ (not) operators are fairly straightforward,
and are correlated with at least some of the senses of the corresponding English
terms. However, it is worth pointing out that the _ (or) operator is not disjunctive
in the same way that the corresponding English word is, and that the =) (im-
plies) operator is only loosely based on any common-sense notions of implication
or causation.

The final bit we need to address involves variables and quantifiers. Recall that
there are no variables in our set-based models, only elements of the domain and
relations that hold among them. We can provide a model-based account for formulas
with variables by employing the notion of a substitution introduced earlier on page
9. Formulas involving 9 are true if a substitution of terms for variables results in
a formula that is true in the model. Formulas involving 8 must be true under all
possible substitutions.

16.3.5 Inference

A meaning representation language must support inference to add valid new propo-
sitions to a knowledge base or to determine the truth of propositions not explicitly
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Each one has a truth table:



Quantifiers
All restaurants in Philly are closed.

∀xRestaurant(x) ∧ Is((LocationOf(x),
Philadelphia) 
⇒ Closed(x) 

The ∀ operator states that for the logical formula to be true, the 
substitution of any object in the knowledge base for the universally 
quantified variable should result in a true formula. 



Value of Logical 
Representation of Sentences

Is Barack Obama a US Citizen?

Citizen_Of(Barack_Obama, United_States) 

∀x Person(x) ∧ Born-In(x, y) 
∧ Located-In(y, United_States) 
⇒ Citizen_Of(x, United_States) 

Person(Barack_Obama) ∧

Born-In(Barack_Obama, Hawaii) ∧

Located-In(Hawaii, United_States)

Citizen_Of(Barack_Obama, United_States) 



Encoder-Decoder 
Models
MACHINE TRANSLATION



Generation with an RNN LM
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In a

<s>

RNN

hole

In a hole

?Sampled Word

Softmax

Embedding

Input Word

Figure 9.7 Autoregressive generation with an RNN-based neural language model.

task is part-of-speech tagging, discussed in detail in Chapter 8. In an RNN approach
to POS tagging, inputs are word embeddings and the outputs are tag probabilities
generated by a softmax layer over the tagset, as illustrated in Fig. 9.8.

In this figure, the inputs at each time step are pre-trained word embeddings cor-
responding to the input tokens. The RNN block is an abstraction that represents
an unrolled simple recurrent network consisting of an input layer, hidden layer, and
output layer at each time step, as well as the shared U , V and W weight matrices that
comprise the network. The outputs of the network at each time step represent the
distribution over the POS tagset generated by a softmax layer.

To generate a tag sequence for a given input, we can run forward inference over
the input sequence and select the most likely tag from the softmax at each step. Since
we’re using a softmax layer to generate the probability distribution over the output

Janet will back

RNN

the bill

Figure 9.8 Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over
the part-of-speech tags as output at each time step.



Generation with prefix



Machine Translation
Translation from one language to another

I'm giving a talk at University of Pennsylvania

ペンシルベニア大学で講演をしています。



Conversational Agents
aka Dialogue Systems
Digital Assistants 

Answering questions on websites 

Communicating with robots

Chatting for fun

Clinical uses



Neural Chatbots
§ Think of response generation as a task of transducing from 

the user’s prior turn to the system’s turn

§ Response generation using encoder-decoder models

§ Train a deep neural network 
§ Map from user1 turn to user2 response



Current state of the art neural 
LMs
ELMo
GPT
BERT
GPT-2

https://allennlp.org/elmo
https://blog.openai.com/language-unsupervised/
https://arxiv.org/pdf/1810.04805.pdf
https://blog.openai.com/better-language-models/


Attention
Weaknesses of the context vector:

• Only directly available at the beginning of 
the process and its influence will wane as 
the output sequence is generated

• Context vector is a function (e.g. last, 
average, max, concatenation) of the 
hidden states of the encoder. This 
approach loses useful information about 
each of the individual encoder states

Potential solution: attention mechanism



Attention mechanism



Transformer 
Architecture 
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Bidirectional Encoder 
Representations from 
Transformers (BERT)

Credit: http://jalammar.github.io/illustrated-bert/

http://jalammar.github.io/illustrated-bert/


Question Answering



Question Answering



HW10 - NMT

🥇 Yue, Yuezhan

🥈 Pengrui, 
Yinhong

🥉 Ji-Eun, 
Rajalakshmi

HW8 - Hypernyms

🥇 Jundong, Zitong

🥈 Pedro, Suyog

🥉 Bowen, Keyu

HW7 - NER

🥇 Yuan

🥈 Pengrui, 
Yinhong

🥉 Bowen, Keyu

HW6 - Neural LMs

🥇 Pengrui, Tien

🥈 Pengrui, Nupur

🥉 Weichen, Yinuo

HW5 - Clustering 

🥇 Sai, Rutuja

🥈 Fang, Bo

🥉 Shubham, 
Nupur

HW5 - without k

🥇 Bo, Hang

🥈 Sai, Rutuja

🥉 Aayush, Shiping

HW3 – N-Gram LMs

🥇 Pengrui, Tien

🥈 Worthan, 
Josepth

🥉 Hanbang

HW2 - Text Classif.

🥇 Yue, Yuezhan

🥈 Ashish, Vikas

🥉 Sri, Simmi

HW2 - extra data

🥇 Ashish, Vikas

🥈 Worthan, 
Joseph

🥉 Megha, 
Sadhana



What can you do next?
Artificial Intelligence: CIS 421/521

Machine Learning: CIS 419/519 or CIS 520 

Deep Learning: CIS 522

Computer Vision: CIS 580 Machine Perception 

CIS 700 courses

Independent Studies / Master Thesis

Be a TA!!



WEWANT
YOU TO TA!



Thank you to our awesome TAs!



Thank you!


