
CIS 530:
Logistic Regression
Wrap-up
SPEECH AND LANGUAGE PROCESSING (3RD EDITION
DRAFT)

CHAPTER 5 “LOGISTIC REGRESSION”

https://web.stanford.edu/~jurafsky/slp3/5.pdf

Reminders

HW 2 is due tonight
before 11:59pm.

Leaderboards are
live until then!

Read Textbook
Chapters 3 and 5

Review: Logistic Regression
Classifier
For binary text classification, consider an input document x,
represented by a vector of features [x1,x2,...,xn]. The
classifier output y can be 1 or 0.

We want to estimate P(y = 1|x).

Logistic regression solves this task by learning a vector of
weights and a bias term.

𝑧 = ∑$ 𝑤$𝑥$ + 𝑏
We can also write this as a dot product:

𝑧 = 𝑤 ⋅ 𝑥 + 𝑏

Var Definition Value Weight Product

x1 Count of positive lexicon words 3 2.5 7.5

x2 Count of negative lexicon words 2 -5.0 -10

x3 Does no appear? (binary feature) 1 -1.2 -1.2

x4 Num 1st and 2nd person pronouns 3 0.5 1.5

x5 Does ! appear? (binary feature) 0 2.0 0

x6 Log of the word count for the doc 4.15 0.7 2.905

b bias 1 0.1 .1

Review: Dot product

z=0.805𝑧 =*
$

𝑤$𝑥$ + 𝑏

Var Definition Value Weight Product

x1 Count of positive lexicon words 3 2.5 7.5

x2 Count of negative lexicon words 2 -5.0 -10

x3 Does no appear? (binary feature) 1 -1.2 -1.2

x4 Num 1st and 2nd person pronouns 3 0.5 1.5

x5 Does ! appear? (binary feature) 0 2.0 0

x6 Log of the word count for the doc 4.15 0.7 2.905

b bias 1 0.1 .1

Review: Sigmoid

σ(0.805)
= 0.69

Review: Learning
How do we get the weights of the model? We learn the
parameters (weights + bias) via learning. This requires 2
components:

1. An objective function or loss function that tells us
distance between the system output and the gold
output. We use cross-entropy loss.

2. An algorithm for optimizing the objective function. We
will use stochastic gradient descent to minimize the loss
function. (We’ll cover SGD later when we get to neural
networks).

Review: Cross-entropy loss
Why does minimizing this negative log probability do what
we want? We want the loss to be smaller if the model’s
estimate is close to correct, and we want the loss to be
bigger if it is confused.

It's hokey. There are virtually no surprises , and the writing is second-rate .
So why was it so enjoyable? For one thing , the cast is great . Another nice
touch is the music . I was overcome with the urge to get off the couch and
start dancing . It sucked me in , and it'll do the same to you .

𝐿,- .𝑦, 𝑦 = −[𝑦 log σ(w·x+b) + 1 − 𝑦 log(1 − σ(w·x+b))]

P(sentiment=1|It’s hokey...) = 0.69. Let’s say y=1.

= −[log σ(w·x+b)]

= − log (0.69) = 𝟎. 𝟑𝟕

Review: Cross-entropy loss
Why does minimizing this negative log probability do what
we want? We want the loss to be smaller if the model’s
estimate is close to correct, and we want the loss to be
bigger if it is confused.

It's hokey. There are virtually no surprises , and the writing is second-rate .
So why was it so enjoyable? For one thing , the cast is great . Another nice
touch is the music . I was overcome with the urge to get off the couch and
start dancing . It sucked me in , and it'll do the same to you .

𝐿,- .𝑦, 𝑦 = −[𝑦 log σ(w·x+b) + 1 − 𝑦 log(1 − σ(w·x+b))]

P(sentiment=1|It’s hokey...) = 0.69. Let’s pretend y=0.

= −[log(1 − σ(w·x+b))]
= − log (0.31) = 𝟏. 𝟏𝟕

Loss on all training examples

log 𝑝 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑙𝑎𝑏𝑒𝑙𝑠 = logI
$JK

L

𝑝(𝑦 $ |𝑥 $)

=*
$JK

L

log𝑝(𝑦 $ |𝑥 $)

= −*
$JK

L

LOP(.𝑦 $ |𝑦 $)

Finding good parameters
We use gradient descent to find good settings for our weights and bias
by minimizing the loss function.

Gradient descent is a method that finds a minimum of a function by
figuring out in which direction (in the space of the parameters θ) the
function’s slope is rising the most steeply, and moving in the opposite
direction.

Q𝜃 = argmin
X

1
𝑚
*
$JK

L

𝐿,-(𝑦 $, 𝑥 $; 𝜃)

Gradient Descent

CIS 530:
Language Modeling
with N-Grams
SPEECH AND LANGUAGE PROCESSING (3RD EDITION
DRAFT)

CHAPTER 3 “LANGUAGE MODELING WITH N-
GRAMS”

https://web.stanford.edu/~jurafsky/slp3/3.pdf

https://www.youtube.com/watch?v=M8MJFrdfGe0

https://www.youtube.com/watch%3Fv=M8MJFrdfGe0

Probabilistic
Language
Models

Autocomplete for texting

Machine Translation

Spelling Correction

Speech Recognition

Other NLG tasks: summarization,
question-answering, dialog systems

Probabilistic
Language
Modeling

Goal: compute the probability of a sentence
or sequence of words

Related task: probability of an upcoming
word

A model that computes either of these is a
language model

Better: the grammar

But LM is standard in NLP

Probabilistic
Language
Modeling

Goal: compute the probability of a sentence
or sequence of words

P(W) = P(w1,w2,w3,w4,w5…wn)

Related task: probability of an upcoming
word

P(w5|w1,w2,w3,w4)

A model that computes either of these
P(W) or P(wn|w1,w2…wn-1) is

called a language model.

Better: the grammar

But language model or LM is standard

How to
compute
P(W)

How to compute this joint probability:

◦ P(the, underdog, Philadelphia, Eagles, won)

Intuition: let’s rely on the Chain Rule of
Probability

The Chain Rule

The Chain Rule

Recall the definition of conditional probabilities
p(B|A) = P(A,B)/P(A) Rewriting: P(A,B) = P(A)P(B|A)

More variables:
P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)

The Chain Rule in General
P(x1,x2,x3,…,xn) = P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1,…,xn-1)

The Chain Rule applied to compute joint
probability of words in sentence

The Chain Rule applied to compute joint
probability of words in sentence

P(“the underdog Philadelphia Eagles won”) =
P(the) × P(underdog|the) × P(Philadelphia|the underdog)

× P(Eagles|the underdog Philadelphia)
× P(won|the underdog Philadelphia Eagles)

𝑃 𝑤K𝑤\⋯𝑤^ =I
$

𝑃(𝑤$|𝑤K𝑤\⋯𝑤$_K)

How to estimate these
probabilities
Could we just count and divide?

How to estimate these
probabilities
Could we just count and divide? Maximum likelihood estimation (MLE)

Why doesn’t this work?

P(won|the underdog team) = Count(the underdog team won)
Count(the underdog

team)

Simplifying
Assumption =
Markov Assumption

Simplifying Assumption =
Markov Assumption
P(won|the underdog team) ≈ P(won|team)

Only depends on the previous k words, not the whole context

≈ P(won|underdog team)

≈ P(wi|wi-2 wi-1)

P(w1w2w3w4…wn) ≈ ∏$
^ P(wi|wi−k…wi−1)

K is the number of context words that we take into account

How much history should we
use?

unigram no history
I
$

^

p(𝑤$) 𝑝 𝑤$ =
𝑐𝑜𝑢𝑛𝑡(𝑤$)
𝑎𝑙𝑙 𝑤𝑜𝑟𝑑𝑠

bigram 1 word as history
I
$

^

p(𝑤$|𝑤$_K) 𝑝 𝑤$|𝑤$_K =
𝑐𝑜𝑢𝑛𝑡(𝑤$_K𝑤$)
𝑐𝑜𝑢𝑛𝑡(𝑤$_K)

trigram 2 words as history
I
$

^

p(𝑤$|𝑤$_\𝑤$_K)
𝑝 𝑤$|𝑤$_\𝑤$_K
=
𝑐𝑜𝑢𝑛𝑡(𝑤$_\𝑤$_K𝑤$)
𝑐𝑜𝑢𝑛𝑡(𝑤$_\𝑤$_K)

4-gram 3 words as history
I
$

^

p(𝑤$|𝑤$_h𝑤$_\𝑤$_K)
𝑝 𝑤$|𝑤$_h𝑤$_\𝑤$_K
=
𝑐𝑜𝑢𝑛𝑡(𝑤$_h𝑤$_\𝑤$_K𝑤$)
𝑐𝑜𝑢𝑛𝑡(𝑤$_h𝑤$_h𝑤$_K)

Historical Notes

Andrei Markov

1913 Andrei Markov counts 20k letters in Eugene Onegin

1948 Claude Shannon uses n-grams to approximate English

1956 Noam Chomsky decries finite-state Markov Models

1980s Fred Jelinek at IBM TJ Watson uses n-grams for ASR, think
about 2 other ideas for models: (1) MT, (2) stock market
prediction

1993 Jelinek at team develops statistical machine translation
𝑎𝑟𝑔𝑚𝑎𝑥i𝑝 𝑒 𝑓 = 𝑝 𝑒 𝑝(𝑓|𝑒)

Jelinek left IBM to found CLSP at JHU
Peter Brown and Robert Mercer move to Renaissance
Technology

Simplest case: Unigram model

fifth an of futures the an incorporated a a the
inflation most dollars quarter in is mass

thrift did eighty said hard 'm july bullish

that or limited the

Some automatically generated sentences from a unigram model

𝑃 𝑤K|𝑤\⋯𝑤^ =I
$

𝑃(𝑤$)

Condition on the previous word:

Bigram model

texaco rose one in this issue is pursuing growth in a boiler
house said mr. gurria mexico 's motion control proposal

without permission from five hundred fifty five yen

outside new car parking lot of the agreement reached

this would be a record november

𝑃 𝑤$|𝑤K𝑤\⋯𝑤$_K = 𝑃(𝑤$|𝑤$_K)

N-gram models

We can extend to trigrams, 4-grams, 5-grams
In general this is an insufficient model of language
◦ because language has long-distance dependencies:

“The computer(s) which I had just put into the machine room on
the fifth floor is (are) crashing.”

But we can often get away with N-gram models

Language
Modeling
ESTIMATING N-GRAM PROBABILITIES

Estimating bigram
probabilities
The Maximum Likelihood Estimate

𝑃 𝑤$ 𝑤$_K =
𝑐𝑜𝑢𝑛𝑡 𝑤$_K, 𝑤$
𝑐𝑜𝑢𝑛𝑡(𝑤$_K)

𝑃 𝑤$ 𝑤$_K =
𝑐 𝑤$_K, 𝑤$
𝑐(𝑤$_K)

An example

<s> I am Sam </s>

<s> Sam I am </s>

<s> I do not like green eggs and ham </s>

𝑃 𝑤$ 𝑤$_K =
𝑐 𝑤$_K, 𝑤$
𝑐(𝑤$_K)

Problems for MLE
Zeros

P(memo|denied the) = 0

And we also assign 0 probability to all sentences containing it!

Train Test
denied the allegations denied the memo
denied the reports
denied the claims
denied the requests

Problems for MLE
Out of vocabulary items (OOV)

<unk> to deal with OOVs

Fixed lexicon L of size V

Normalize training data by replacing any word not in L with <unk>

Avoid zeros with smoothing

Practical Issues
We do everything in log space
◦Avoid underflow
◦(also adding is faster than multiplying)

log 𝑝K ⋅ 𝑝\ ⋅ 𝑝h ⋅ 𝑝k = log 𝑝K + log 𝑝\ + log 𝑝h + log 𝑝k

Language Modeling Toolkits
SRILM
◦http://www.speech.sri.com/projects/srilm/

KenLM
◦https://kheafield.com/code/kenlm/

http://www.speech.sri.com/projects/srilm/
https://kheafield.com/code/kenlm/

Google N-Gram Release,
August 2006

…

https://ai.googleblog.com/2006/08/all-our-n-gram-are-belong-to-you.html

https://ai.googleblog.com/2006/08/all-our-n-gram-are-belong-to-you.html

Google N-Gram Release
serve as the incoming 92

serve as the incubator 99

serve as the independent 794

serve as the index 223

serve as the indication 72

serve as the indicator 120

serve as the indicators 45

serve as the indispensable 111

serve as the indispensible 40

serve as the individual 234

https://ai.googleblog.com/2006/08/all-our-n-gram-are-belong-to-you.html

https://ai.googleblog.com/2006/08/all-our-n-gram-are-belong-to-you.html

Google Book N-grams
https://books.google.com/ngrams

https://books.google.com/ngrams

Language
Modeling

EVALUATION AND PERPLEXITY

Evaluation:
How good is
our model?

Does our language model prefer good
sentences to bad ones?

◦ Assign higher probability to “real” or
“frequently observed” sentences
◦ Than “ungrammatical” or “rarely observed” sentences?

We train parameters of our model on a
training set.

We test the model’s performance on data we
haven’t seen.

◦ A test set is an unseen dataset that is different
from our training set, totally unused.

◦ An evaluation metric tells us how well our
model does on the test set.

Training on
the test set

We can’t allow test sentences into the
training set

We will assign it an artificially high probability
when we set it in the test set

“Training on the test set”

Bad science!

And violates the honor code

46

Extrinsic evaluation of language models

Difficulty of
extrinsic
(task-based)
evaluation of
language
models

Extrinsic evaluation
◦ Time-consuming; can take days or weeks

So
◦ Sometimes use intrinsic evaluation: perplexity
◦ Bad approximation

◦ unless the test data looks just like the training data
◦ So generally only useful in pilot experiments

◦ But is helpful to think about.

Intuition of Perplexity
The Shannon Game:

◦ How well can we predict the next word?

I always order pizza with cheese and ____

Intuition of Perplexity
The Shannon Game:

◦ How well can we predict the next word?

I always order pizza with cheese and ____

mushrooms 0.1

pepperoni 0.1

anchovies 0.01

….

fried rice 0.0001

….

and 1e-100

Intuition of Perplexity
The Shannon Game:

◦ How well can we predict the next word?

◦ Unigrams are terrible at this game. (Why?)

I always order pizza with cheese and ____

The 33rd President of the US was ____

I saw a ____

mushrooms 0.1

pepperoni 0.1

anchovies 0.01

….

fried rice 0.0001

….

and 1e-100

Intuition of Perplexity
The Shannon Game:

◦ How well can we predict the next word?

I always order pizza with cheese and ____

The 33rd President of the US was ____

I saw a ____

mushrooms 0.1

pepperoni 0.1

anchovies 0.01

….

fried rice 0.0001

….

and 1e-100

Intuition of Perplexity
The Shannon Game:

◦ How well can we predict the next word?

◦ Unigrams are terrible at this game. (Why?)

A better model of a text
◦ is one which assigns a higher probability to the word that actually occurs

I always order pizza with cheese and ____

The 33rd President of the US was ____

I saw a ____

mushrooms 0.1

pepperoni 0.1

anchovies 0.01

….

fried rice 0.0001

….

and 1e-100

Perplexity

Perplexity is the inverse probability of the test set, normalized by the number of
words

Minimizing perplexity is the same as maximizing probability

The best language model is one that best predicts an unseen test set
• Gives the highest P(sentence)

Perplexity

Perplexity is the inverse probability of
the test set, normalized by the number
of words

Chain rule:

For bigrams:

Minimizing perplexity is the same as maximizing probability

The best language model is one that best predicts an unseen test set
• Gives the highest P(sentence)

𝑃𝑃 𝑊 = 𝑃 𝑤K𝑤\⋯𝑤m _Km

=
n 1
𝑃 𝑤K𝑤\⋯𝑤m

𝑃𝑃 𝑊 =
n

I
$JK

m
1

𝑃 𝑤$|𝑤K,𝑤\⋯𝑤$_K

𝑃𝑃 𝑊 =
n

I
$JK

m
1

𝑃 𝑤$|𝑤$_K

Perplexity as branching factor
Let’s suppose a sentence consisting of random digits

What is the perplexity of this sentence according to a model that assign
P=1/10 to each digit?

Perplexity as branching factor
Let’s suppose a sentence consisting of random digits

What is the perplexity of this sentence according to a model that assign
P=1/10 to each digit?

𝑃𝑃 𝑊 = 𝑃 𝑤K𝑤\ ⋯𝑤m
_Km

=
1
10

m_
K
m

=
1
10

_K

= 10

Lower perplexity = better
model

Training 38 million words, test 1.5 million words,
WSJ

N-gram
Order

Unigram Bigram Trigram

Perplexity 962 170 109

Minimizing perplexity is the same as maximizing probability

Language
Modeling

GENERALIZATION AND ZEROS

The Shannon Visualization
Method

Choose a random bigram

(<s>, w) according to its probability

Now choose a random bigram (w, x)
according to its probability

And so on until we choose </s>

Then string the words together

<s> I
I want
want to

to eat
eat Chinese

Chinese food
food </s>

I want to eat Chinese food

Approximating Shakespeare

10 CHAPTER 4 • N-GRAMS

Imagine all the words of English covering the probability space between 0 and 1,
each word covering an interval proportional to its frequency. We choose a random
value between 0 and 1 and print the word whose interval includes this chosen value.
We continue choosing random numbers and generating words until we randomly
generate the sentence-final token </s>. We can use the same technique to generate
bigrams by first generating a random bigram that starts with <s> (according to its
bigram probability), then choosing a random bigram to follow (again, according to
its bigram probability), and so on.

To give an intuition for the increasing power of higher-order N-grams, Fig. 4.3
shows random sentences generated from unigram, bigram, trigram, and 4-gram
models trained on Shakespeare’s works.

1
–To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have

gram –Hill he late speaks; or! a more to leg less first you enter

2
–Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.

gram –What means, sir. I confess she? then all sorts, he is trim, captain.

3
–Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
’tis done.

gram –This shall forbid it should be branded, if renown made it empty.

4
–King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;

gram –It cannot be but so.
Figure 4.3 Eight sentences randomly generated from four N-grams computed from Shakespeare’s works. All
characters were mapped to lower-case and punctuation marks were treated as words. Output is hand-corrected
for capitalization to improve readability.

The longer the context on which we train the model, the more coherent the sen-
tences. In the unigram sentences, there is no coherent relation between words or any
sentence-final punctuation. The bigram sentences have some local word-to-word
coherence (especially if we consider that punctuation counts as a word). The tri-
gram and 4-gram sentences are beginning to look a lot like Shakespeare. Indeed, a
careful investigation of the 4-gram sentences shows that they look a little too much
like Shakespeare. The words It cannot be but so are directly from King John. This
is because, not to put the knock on Shakespeare, his oeuvre is not very large as
corpora go (N = 884,647,V = 29,066), and our N-gram probability matrices are
ridiculously sparse. There are V 2 = 844,000,000 possible bigrams alone, and the
number of possible 4-grams is V 4 = 7⇥1017. Thus, once the generator has chosen
the first 4-gram (It cannot be but), there are only five possible continuations (that, I,
he, thou, and so); indeed, for many 4-grams, there is only one continuation.

To get an idea of the dependence of a grammar on its training set, let’s look at an
N-gram grammar trained on a completely different corpus: the Wall Street Journal
(WSJ) newspaper. Shakespeare and the Wall Street Journal are both English, so
we might expect some overlap between our N-grams for the two genres. Fig. 4.4
shows sentences generated by unigram, bigram, and trigram grammars trained on
40 million words from WSJ.

Compare these examples to the pseudo-Shakespeare in Fig. 4.3. While superfi-
cially they both seem to model “English-like sentences”, there is obviously no over-

Shakespeare as corpus

V=29,066 types, N=884,647 tokens

Shakespeare as corpus

N=884,647 tokens, V=29,066
Shakespeare produced 300,000 bigram types out
of V2= 844 million possible bigrams.
◦ So 99.96% of the possible bigrams were never seen

(have zero entries in the table)

4-grams worse: What's coming out looks like
Shakespeare because it is Shakespeare

The wall street journal is not
shakespeare (no offense)

4.3 • GENERALIZATION AND ZEROS 11

1 Months the my and issue of year foreign new exchange’s september
were recession exchange new endorsed a acquire to six executives

gram

2
Last December through the way to preserve the Hudson corporation N.
B. E. C. Taylor would seem to complete the major central planners one

gram point five percent of U. S. E. has already old M. X. corporation of living
on information such as more frequently fishing to keep her

3
They also point to ninety nine point six billion dollars from two hundred
four oh six three percent of the rates of interest stores as Mexico and

gram Brazil on market conditions
Figure 4.4 Three sentences randomly generated from three N-gram models computed from
40 million words of the Wall Street Journal, lower-casing all characters and treating punctua-
tion as words. Output was then hand-corrected for capitalization to improve readability.

lap whatsoever in possible sentences, and little if any overlap even in small phrases.
This stark difference tells us that statistical models are likely to be pretty useless as
predictors if the training sets and the test sets are as different as Shakespeare and
WSJ.

How should we deal with this problem when we build N-gram models? One way
is to be sure to use a training corpus that has a similar genre to whatever task we are
trying to accomplish. To build a language model for translating legal documents,
we need a training corpus of legal documents. To build a language model for a
question-answering system, we need a training corpus of questions.

Matching genres is still not sufficient. Our models may still be subject to the
problem of sparsity. For any N-gram that occurred a sufficient number of times,
we might have a good estimate of its probability. But because any corpus is limited,
some perfectly acceptable English word sequences are bound to be missing from it.
That is, we’ll have a many cases of putative “zero probability N-grams” that should
really have some non-zero probability. Consider the words that follow the bigram
denied the in the WSJ Treebank3 corpus, together with their counts:

denied the allegations: 5
denied the speculation: 2
denied the rumors: 1
denied the report: 1

But suppose our test set has phrases like:

denied the offer
denied the loan

Our model will incorrectly estimate that the P(offer|denied the) is 0!
These zeros— things things that don’t ever occur in the training set but do occurzeros

in the test set—are a problem for two reasons. First, they means we are underes-
timating the probability of all sorts of words that might occur, which will hurt the
performance of any application we want to run on this data.

Second, if the probability of any word in the testset is 0, the entire probability of
the test set is 0. But the definition of perplexity is based on the inverse probability
of the test set. If some words have zero probability, we can’t compute perplexity at
all, since we can’t divide by 0!

Can you guess the author of
these random 3-gram
sentences?

They also point to ninety nine point six billion dollars from two hundred
four oh six three percent of the rates of interest stores as Mexico and
gram Brazil on market conditions

This shall forbid it should be branded, if renown made it empty.

“You are uniformly charming!” cried he, with a smile of associating and
now and then I bowed and they perceived a chaise and four to wish for.

65

The perils of overfitting
N-grams only work well for word prediction if the
test corpus looks like the training corpus
◦ In real life, it often doesn’t
◦ We need to train robust models that generalize!
◦ One kind of generalization: Zeros!

◦ Things that don’t ever occur in the training set
◦ But occur in the test set

Zero probability bigrams
Bigrams with zero probability

◦ mean that we will assign 0 probability to the test set!

And hence we cannot compute perplexity (can’t divide by 0)!

Language
Modeling

SMOOTHING: ADD-ONE (LAPLACE) SMOOTHING

The intuition of smoothing (from Dan Klein)

When we have sparse statistics:

Steal probability mass to generalize better

P(w | denied the)
3 allegations
2 reports
1 claims
1 request
7 total

P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other
7 total

al
le

ga
tio

ns

re
po

rt
s

cl
ai

m
s

at
ta

ck

re
qu

es
t

m
an

ou
tc

om
e

…

al
le

ga
tio

ns

at
ta

ck

m
an

ou
tc

om
e

…al
le

ga
tio

ns

re
po

rt
s

cl
ai

m
s

re
qu

es
t

Add-one estimation
Also called Laplace smoothing

Pretend we saw each word one more time than we did

Just add one to all the counts!

MLE estimate:

Add-1 estimate:

𝑃pq- 𝑤$ 𝑤$_K) =
𝑐 𝑤$_K, 𝑤$
𝑐(𝑤$_K)

𝑃rss_K 𝑤$ 𝑤$_K) =
𝑐 𝑤$_K, 𝑤$ + 1
𝑐 𝑤$_K + 𝑉

Maximum Likelihood
Estimates

The maximum likelihood estimate
◦ of some parameter of a model M from a training set T
◦ maximizes the likelihood of the training set T given the model M

Suppose the word “bagel” occurs 400 times in a corpus of a million words

What is the probability that a random word from some other text will be “bagel”?

MLE estimate is 400/1,000,000 = .0004

This may be a bad estimate for some other corpus
◦ But it is the estimate that makes it most likely that “bagel” will occur 400 times in a

million word corpus.

Add-1 estimation is a blunt
instrument
So add-1 isn’t used for N-grams:
◦ We’ll see better methods

But add-1 is used to smooth other NLP models
◦ For text classification
◦ In domains where the number of zeros isn’t so huge.

Language
Modeling

INTERPOLATION, BACKOFF, AND WEB-SCALE LMS

Backoff and
Interpolation

Sometimes it helps to use less context
Condition on less context for contexts you
haven’t learned much about

Backoff:
use trigram if you have good evidence,
otherwise bigram, otherwise unigram

Interpolation:
mix unigram, bigram, trigram

Interpolation works better

Linear Interpolation

Simple interpolation

Lambdas conditional on context:

Q𝑃 𝑤^ 𝑤^_\𝑤^_K = 𝜆K𝑃 𝑤^ 𝑤^_\𝑤^_K
+𝜆\𝑃 𝑤^ 𝑤^_K)
+𝜆h𝑃(𝑤^)

*
$

𝜆$ = 1

Q𝑃 𝑤^ 𝑤^_\𝑤^_K = 𝜆K 𝑤
𝑛 − 1
𝑛 − 2 𝑃 𝑤^ 𝑤^_\𝑤^_K

+𝜆\ 𝑤
𝑛 − 1
𝑛 − 2 𝑃 𝑤^ 𝑤^_K)

+𝜆h 𝑤
𝑛 − 1
𝑛 − 2 𝑃(𝑤^)

How to set the lambdas?
Use a held-out corpus

Choose λs to maximize the probability of held-out data:
◦ Fix the N-gram probabilities (on the training data)
◦ Then search for λs that give largest probability to held-out set:

Training Data Held-Out
Data

Test
Data

log 𝑃(𝑤K ⋯𝑤^|𝑀 𝜆K ⋯𝜆x) =*
$

log 𝑃p yz⋯y{ (𝑤$|𝑤$_K)

Unknown
words: Open
versus closed
vocabulary
tasks

If we know all the words in advanced
◦ Vocabulary V is fixed
◦ Closed vocabulary task

Often we don’t know this
◦ Out Of Vocabulary = OOV words
◦ Open vocabulary task

Instead: create an unknown word token
<UNK>

◦ Training of <UNK> probabilities
◦ Create a fixed lexicon L of size V
◦ At text normalization phase, any training word not in L

changed to <UNK>
◦ Now we train its probabilities like a normal word

◦ At decoding time
◦ If text input: Use UNK probabilities for any word not in

training

Huge web-
scale n-grams

How to deal with, e.g., Google N-gram corpus

Pruning
◦ Only store N-grams with count > threshold.

◦ Remove singletons of higher-order n-grams

◦ Entropy-based pruning

Efficiency
◦ Efficient data structures like tries
◦ Bloom filters: approximate language models
◦ Store words as indexes, not strings

◦ Use Huffman coding to fit large numbers of words into two
bytes

◦ Quantize probabilities (4-8 bits instead of 8-
byte float)

Smoothing for Web-scale N-
grams
“Stupid backoff” (Brants et al. 2007)
No discounting, just use relative frequencies

79

𝑆(𝑤$|𝑤$_x}K$_K) =
count 𝑤$_x}K$

count 𝑤$_x}K$_K if count 𝑤$_x}K$ > 0

0.4𝑆 𝑤$ 𝑤$_x}\$_K otherwise

𝑆 𝑤$ =
count 𝑤$

𝑁

N-gram Smoothing Summary
Add-1 smoothing:
◦ OK for text categorization, not for language modeling

The most commonly used method:
◦ Extended Interpolated Kneser-Ney

For very large N-grams like the Web:
◦ Stupid backoff

80

Advanced Language
Modeling
Discriminative models:

◦ choose n-gram weights to improve a task, not to fit the training set

Parsing-based models

Caching Models
◦ Recently used words are more likely to appear

𝑃,r,�- 𝑤 ℎ𝑖𝑠𝑡𝑜𝑟𝑦 = 𝜆𝑃 𝑤$ 𝑤$_\𝑤$_K + 1 − 𝜆
𝑐 𝑤 ∈ ℎ𝑖𝑠𝑡𝑜𝑟𝑦
|ℎ𝑖𝑠𝑡𝑜𝑟𝑦|

Vector Space
Semantics
READ CHAPTER 6 IN THE DRAFT 3RD EDITION OF
JURAFSKY AND MARTIN

What does ongchoi mean?

Suppose you see these sentences:

Ong choi is delicious sautéed with garlic.

Ong choi is superb over rice

Ong choi leaves with salty sauces

And you've also seen these:

…spinach sautéed with garlic over rice

Chard stems and leaves are delicious

Collard greens and other salty leafy greens

Conclusion:
Ongchoi is a leafy green like spinach, chard, or collard greens

Ong choi: Ipomoea aquatica
"Water Spinach"

Yamaguchi, Wikimedia Commons, public domain

If we consider optometrist and
eye-doctor we find that, as our
corpus of utterances grows,
these two occur in almost the
same environments. In contrast,
there are many sentence
environments in which
optometrist occurs but lawyer
does not...

It is a question of the relative
frequency of such environments,
and of what we will obtain if we
ask an informant to substitute
any word he wishes for oculist
(not asking what words have the
same meaning).

These and similar tests all

Distributional Hypothesis

good

nice

bad
worst

not good

wonderful
amazing

terrific

dislike

worse

very good incredibly good
fantastic

incredibly badnow

youi
that

with

byto
‘s

are

is

a
than

We'll build a new
representation of words
that encodes their
similarity
Each word = a vector

Similar words are "nearby in space"

We define a word as a vector
Called an "embedding" because it's embedded into a
space

The standard way to represent meaning in NLP

Fine-grained model of meaning for similarity
◦ NLP tasks like sentiment analysis

◦ With words, requires same word to be in training and test
◦ With embeddings: ok if similar words occurred!!!

◦ Question answering, conversational agents, etc

We'll introduce 2 kinds of
embeddings
Tf-idf

◦ A common baseline model
◦ Sparse vectors
◦ Words are represented by a simple function of the counts of nearby words

Word2vec
◦ Dense vectors
◦ Representation is created by training a classifier to distinguish nearby and

far-away words

