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Reminders

HOMEWORK 3 IS DUE ON 
TONIGHT BY 11:59PM

HW4 WILL BE RELEASED 
SOON

READ TEXTBOOK 
CHAPTER 6



Tf-idf and PPMI 
are 
sparse 
representations

tf-idf and PPMI vectors are
◦ long (length |V|= 20,000 to 

50,000)
◦ sparse (most elements are zero)



Alternative: 
dense vectors

vectors which are
◦ short (length 50-1000)
◦ dense (most elements are non-

zero)
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Sparse versus 
dense vectors

Why dense vectors?
◦ Short vectors may be easier to use as features

in machine learning (fewer weights to tune)
◦ Dense vectors may generalize better than 

storing explicit counts
◦ They may do better at capturing synonymy:

◦ car and automobile are synonyms; but are distinct 
dimensions in sparse vectors
◦ a word with car as a neighbor and a word with 

automobile as a neighbor should be similar, but aren't

◦ In practice, they work better
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Dense embeddings 
you can download!
Word2vec (Mikolov et al.)

https://code.google.com/archive/p/word2v
ec/

Fasttext http://www.fasttext.cc/

Glove (Pennington, Socher, Manning)

http://nlp.stanford.edu/projects/glove/

Magnitude (Patel and Sands)

https://github.com/plasticityai/magnitude

https://code.google.com/archive/p/word2vec/
http://www.fasttext.cc/
http://nlp.stanford.edu/projects/glove/
https://github.com/plasticityai/magnitude


Word2vec

Popular embedding method

Very fast to train

Code available on the web

Idea: predict rather than count 



Word2vec
◦Instead of counting how often each 
word w occurs near "apricot"

◦Train a classifier on a binary 
prediction task:
◦ Is w likely to show up near "apricot"?

◦We don’t actually care about this task
◦ But we'll take the learned classifier weights 

as the word embeddings



Brilliant insight
• Use running text as implicitly supervised 

training data!
• A word s near apricot 
• Acts as gold ‘correct answer’ to the question 
• “Is word w likely to show up near apricot?” 

• No need for hand-labeled supervision
• The idea comes from neural language 

modeling (Bengio et al. 2003))



Word2Vec: Skip-Gram Task
Word2vec provides a variety of options. Let's do
◦ "skip-gram with negative sampling" (SGNS)



Skip-gram algorithm
1. Treat the target word and a neighboring 

context word as positive examples.
2. Randomly sample other words in the 

lexicon to get negative samples
3. Use logistic regression to train a classifier 

to distinguish those two cases
4. Use the weights as the embeddings
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Skip-Gram Training Data
Training sentence:
... lemon, a tablespoon of apricot jam   a pinch ... 

c1            c2   target c3    c4

2/5/20 12

Assume context words are those in +/- 2 
word window



Skip-Gram Goal

Given a tuple (t,c)  = target, context
◦ (apricot, jam)
◦ (apricot, aardvark)

Return probability that c is a real context word:

P(+|t,c)
P(−|t,c) = 1−P(+|t,c)

2/5/20
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How to compute p(+|t,c)?
Intuition:
◦ Words are likely to appear near similar words
◦ Model similarity with dot-product!
◦ Similarity(t,c) ≈ t · c

Problem:
◦Dot product is not a probability!

◦ (Neither is cosine)

19.2 • SPARSE VECTOR MODELS: POSITIVE POINTWISE MUTUAL INFORMATION 7

computer data pinch result sugar
apricot 0 0 0.56 0 0.56

pineapple 0 0 0.56 0 0.56
digital 0.62 0 0 0 0

information 0 0.58 0 0.37 0
Figure 19.6 The Add-2 Laplace smoothed PPMI matrix from the add-2 smoothing counts
in Fig. 17.5.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(~v,~w) =~v ·~w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (19.10)

Intuitively, the dot product acts as a similarity metric because it will tend to be
high just when the two vectors have large values in the same dimensions. Alterna-
tively, vectors that have zeros in different dimensions—orthogonal vectors— will be
very dissimilar, with a dot product of 0.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|~v| =

vuut
NX

i=1

v2
i (19.11)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. Raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are irregardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors ~a and
~b:

~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|

= cosq (19.12)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(19.13)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector



Turning dot product into a 
probability
The sigmoid lies between 0 and 1:

16 CHAPTER 6 • VECTOR SEMANTICS

6.7.1 The classifier
Let’s start by thinking about the classification task, and then turn to how to train.
Imagine a sentence like the following, with a target word apricot and assume we’re
using a window of ±2 context words:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4

Our goal is to train a classifier such that, given a tuple (t,c) of a target word
t paired with a candidate context word c (for example (apricot, jam), or perhaps
(apricot, aardvark) it will return the probability that c is a real context word (true
for jam, false for aardvark):

P(+|t,c) (6.15)

The probability that word c is not a real context word for t is just 1 minus
Eq. 6.15:

P(�|t,c) = 1�P(+|t,c) (6.16)

How does the classifier compute the probability P? The intuition of the skip-
gram model is to base this probability on similarity: a word is likely to occur near
the target if its embedding is similar to the target embedding. How can we compute
similarity between embeddings? Recall that two vectors are similar if they have a
high dot product (cosine, the most popular similarity metric, is just a normalized dot
product). In other words:

Similarity(t,c)⇡ t · c (6.17)

Of course, the dot product t · c is not a probability, it’s just a number ranging
from 0 to •. (Recall, for that matter, that cosine isn’t a probability either). To turn
the dot product into a probability, we’ll use the logistic or sigmoid function s(x),
the fundamental core of logistic regression:

s(x) =
1

1+ e�x (6.18)

The probability that word c is a real context word for target word t is thus com-
puted as:

P(+|t,c) =
1

1+ e�t·c (6.19)

The sigmoid function just returns a number between 0 and 1, so to make it a
probability we’ll need to make sure that the total probability of the two possible
events (c being a context word, and c not being a context word) sum to 1.

The probability that word c is not a real context word for t is thus:

P(�|t,c) = 1�P(+|t,c)

=
e�t·c

1+ e�t·c (6.20)
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For all the context words:
Assume all context words are 
independent
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Equation 6.19 give us the probability for one word, but we need to take account
of the multiple context words in the window. Skip-gram makes the strong but very
useful simplifying assumption that all context words are independent, allowing us to
just multiply their probabilities:

P(+|t,c1:k) =
kY

i=1

1
1+ e�t·ci

(6.21)

logP(+|t,c1:k) =
kX

i=1

log
1

1+ e�t·ci
(6.22)

In summary, skip-gram trains a probabilistic classifier that, given a test target
word t and its context window of k words c1:k, assigns a probability based on how
similar this context window is to the target word. The probability is based on apply-
ing the logistic (sigmoid) function to the dot product of the embeddings of the target
word with each context word. We could thus compute this probability if only we
had embeddings for each word target and context word in the vocabulary. Let’s now
turn to learning these embeddings (which is the real goal of training this classifier in
the first place).

6.7.2 Learning skip-gram embeddings
Word2vec learns embeddings by starting with an initial set of embedding vectors
and then iteratively shifting the embedding of each word w to be more like the em-
beddings of words that occur nearby in texts, and less like the embeddings of words
that don’t occur nearby.

Let’s start by considering a single piece of the training data, from the sentence
above:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4

This example has a target word t (apricot), and 4 context words in the L = ±2
window, resulting in 4 positive training instances (on the left below):

positive examples +
t c
apricot tablespoon
apricot of
apricot preserves
apricot or

negative examples -
t c t c
apricot aardvark apricot twelve
apricot puddle apricot hello
apricot where apricot dear
apricot coaxial apricot forever

For training a binary classifier we also need negative examples, and in fact skip-
gram uses more negative examples than positive examples, the ratio set by a param-
eter k. So for each of these (t,c) training instances we’ll create k negative samples,
each consisting of the target t plus a ‘noise word’. A noise word is a random word
from the lexicon, constrained not to be the target word t. The right above shows the
setting where k = 2, so we’ll have 2 negative examples in the negative training set
� for each positive example t,c.

The noise words are chosen according to their weighted unigram frequency
pa(w), where a is a weight. If we were sampling according to unweighted fre-
quency p(w), it would mean that with unigram probability p(“the”) we would choose
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Popping back 
up

Now we have a way of computing the 
probability of p(+|t,c), which is the 
probability that c is a real context 
word for t.  

But, we need embeddings for t and c
to do it.

Where do we get those embeddings?

Word2vec learns them automatically!  

It starts with an initial set of 
embedding vectors and then 
iteratively shifts the embedding of 
each word w to be more like the 
embeddings of words that occur 
nearby in texts, and less like the 
embeddings of words that don’t 
occur nearby. 



Skip-Gram Training Data
Training sentence:
... lemon, a tablespoon of apricot jam   a pinch ... 

c1              c2     t c3    c4

Training data: input/output pairs centering 
on apricot
Assume a +/- 2 word window
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Skip-Gram Training
Training sentence:
... lemon, a tablespoon of apricot jam   a pinch ... 

c1              c2     t c3    c4
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This example has a target word t (apricot), and 4 context words in the L = ±2
window, resulting in 4 positive training instances (on the left below):

positive examples +
t c
apricot tablespoon
apricot of
apricot preserves
apricot or

negative examples -
t c t c
apricot aardvark apricot twelve
apricot puddle apricot hello
apricot where apricot dear
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For training a binary classifier we also need negative examples, and in fact skip-
gram uses more negative examples than positive examples, the ratio set by a param-
eter k. So for each of these (t,c) training instances we’ll create k negative samples,
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from the lexicon, constrained not to be the target word t. The right above shows the
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The noise words are chosen according to their weighted unigram frequency
pa(w), where a is a weight. If we were sampling according to unweighted fre-
quency p(w), it would mean that with unigram probability p(“the”) we would choose

For each positive example, 
we'll create k negative 
examples.
Using noise words
Any random word that isn't t



How many noise words?
Training sentence:
... lemon, a tablespoon of apricot jam   a pinch ... 

c1              c2     t c3    c4
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each consisting of the target t plus a ‘noise word’. A noise word is a random word
from the lexicon, constrained not to be the target word t. The right above shows the
setting where k = 2, so we’ll have 2 negative examples in the negative training set
� for each positive example t,c.

The noise words are chosen according to their weighted unigram frequency
pa(w), where a is a weight. If we were sampling according to unweighted fre-
quency p(w), it would mean that with unigram probability p(“the”) we would choose
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Equation 6.19 give us the probability for one word, but we need to take account
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P(+|t,c1:k) =
kY

i=1

1
1+ e�t·ci

(6.21)

logP(+|t,c1:k) =
kX

i=1

log
1

1+ e�t·ci
(6.22)

In summary, skip-gram trains a probabilistic classifier that, given a test target
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similar this context window is to the target word. The probability is based on apply-
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c1 c2 t c3 c4

This example has a target word t (apricot), and 4 context words in the L = ±2
window, resulting in 4 positive training instances (on the left below):

positive examples +
t c
apricot tablespoon
apricot of
apricot preserves
apricot or

negative examples -
t c t c
apricot aardvark apricot twelve
apricot puddle apricot hello
apricot where apricot dear
apricot coaxial apricot forever

For training a binary classifier we also need negative examples, and in fact skip-
gram uses more negative examples than positive examples, the ratio set by a param-
eter k. So for each of these (t,c) training instances we’ll create k negative samples,
each consisting of the target t plus a ‘noise word’. A noise word is a random word
from the lexicon, constrained not to be the target word t. The right above shows the
setting where k = 2, so we’ll have 2 negative examples in the negative training set
� for each positive example t,c.

The noise words are chosen according to their weighted unigram frequency
pa(w), where a is a weight. If we were sampling according to unweighted fre-
quency p(w), it would mean that with unigram probability p(“the”) we would choose

k=2



Choosing noise words
Could pick w according to their unigram frequency P(w)

More common to chosen then according to pα(w)

α= ¾ works well because it gives rare noise words slightly higher 
probability

To show this, imagine two events p(a)=.99 and p(b) = .01:
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the word the as a noise word, with unigram probability p(“aardvark”) we would
choose aardvark, and so on. But in practice it is common to set a = .75, i.e. use the
weighting p

3
4 (w):

Pa(w) =
count(w)a

P
w count(w)a (6.23)

Setting a = .75 gives better performance because it gives rare noise words
slightly higher probability: for rare words, Pa(w) > P(w). To visualize this intu-
ition, it might help to work out the probabilities for an example with two events,
P(a) = .99 and P(b) = .01:

Pa(a) =
.99.75

.99.75 + .01.75 = .97

Pa(b) =
.01.75

.99.75 + .01.75 = .03 (6.24)

Given the set of positive and negative training instances, and an initial set of
embeddings, the goal of the learning algorithm is to adjust those embeddings such
that we

• Maximize the similarity of the target word, context word pairs (t,c) drawn
from the positive examples

• Minimize the similarity of the (t,c) pairs drawn from the negative examples.

We can express this formally over the whole training set as:

L(q) =
X

(t,c)2+
logP(+|t,c)+

X

(t,c)2�
logP(�|t,c) (6.25)

Or, focusing in on one word/context pair (t,c) with its k noise words n1...nk, the
learning objective L is:

L(q) = logP(+|t,c)+
kX

i=1

logP(�|t,ni)

= logs(c · t)+
kX

i=1

logs(�ni · t)

= log
1

1+ e�c·t +
kX

i=1

log
1

1+ eni·t
(6.26)

That is, we want to maximize the dot product of the word with the actual context
words, and minimize the dot products of the word with the k negative sampled non-
neighbor words.

We can then use stochastic gradient descent to train to this objective, iteratively
modifying the parameters (the embeddings for each target word t and each context
word or noise word c in the vocabulary) to maximize the objective.

Note that the skip-gram model thus actually learns two separate embeddings
for each word w: the target embedding t and the context embedding c. Thesetarget

embedding
context

embedding embeddings are stored in two matrices, the target matrix T and the context matrix
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Learning the classifier
Iterative process.
We’ll start with 0 or random weights
Then adjust the word weights to
◦ make the positive pairs more likely 
◦ and the negative pairs less likely

over the entire training set:



Setup
Let's represent words as vectors of some length (say 
300), randomly initialized. 

So we start with 300 * V random parameters

Over the entire training set, we’d like to adjust those 
word vectors such that we
◦ Maximize the similarity of the target word, context 

word pairs (t,c) drawn from the positive data
◦ Minimize the similarity of the (t,c) pairs drawn from 

the negative data. 
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Objective Criteria
We want to maximize…

Maximize the + label for the pairs from the positive 
training data, and the – label for the pairs sample 
from the negative data.

2/5/20
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X

(t,c)2+

logP (+|t, c) +
X

(t,c)2�

logP (�|t, c)



Focusing on one target word t:
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Given the set of positive and negative training instances, and an initial set of em-
beddings, the goal of the learning algorithm is to adjust those embeddings such that
we

• Maximize the similarity of the target word, context word pairs (t,c) drawn
from the positive examples

• Minimize the similarity of the (t,c) pairs drawn from the negative examples.
We can express this formally over the whole training set as:

L(q) =
X

(t,c)2+
logP(+|t,c)+

X

(t,c)2�
logP(�|t,c) (6.34)

If we look at one word/context pair (t,c) with its k noise words n1...nk, the learning
objective L is:

L(q) = logP(+|t,c)+
kX

i=1

logP(�|t,ni)

= logs(c · t)+
kX

i=1

logs(�ni · t)

= log
1

1+ e�c·t +
kX

i=1

log
1

1+ eni·t
(6.35)

That is, we want to maximize the dot product of the word with the actual context
words, and minimize the dot products of the word with the k negative sampled non-
neighbor words.

We can then use stochastic gradient descent to train to this objective, iteratively
modifying the parameters (the embeddings for each target word t and each context
word or noise word c in the vocabulary) to maximize the objective.

Note that the skip-gram model thus actually learns two separate embeddings
for each word w: the target embedding t and the context embedding c. Thesetarget

embedding
context

embedding embeddings are stored in two matrices, the target matrix T and the context matrix
C. So each row i of the target matrix T is the 1⇥ d vector embedding ti for word
i in the vocabulary V , and each column j of the context matrix C is a d ⇥ 1 vector
embedding c j for word j in V . Fig. 6.12 shows an intuition of the learning task for
the embeddings encoded in these two matrices.

Just as in logistic regression, then, the learning algorithm starts with randomly
initialized W and C matrices, and then walks through the training corpus using gra-
dient descent to move W and C so as to maximize the objective in Eq. 6.35. Thus
the matrices W and C function as the parameters q that logistic regression is tuning.

Once the embeddings are learned, we’ll have two embeddings for each word wi:
ti and ci. We can choose to throw away the C matrix and just keep W , in which case
each word i will be represented by the vector ti.

Alternatively we can add the two embeddings together, using the summed em-
bedding ti + ci as the new d-dimensional embedding, or we can concatenate them
into an embedding of dimensionality 2d.

As with the simple count-based methods like tf-idf, the context window size L
affects the performance of skip-gram embeddings, and experiments often tune the
parameter L on a devset. One difference from the count-based methods is that for
skip-grams, the larger the window size the more computation the algorithm requires
for training (more neighboring words must be predicted).
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Train using gradient descent
Actually learns two separate embedding matrices W and C

Can use W and throw away C, or merge them somehow



Summary: How to learn word2vec 
(skip-gram) embeddings
Start with V random 300-dimensional vectors as 
initial embeddings
Use logistic regression, the second most basic 
classifier used in machine learning after naïve 
Bayes
◦ Take a corpus and take pairs of words that co-occur as 

positive examples
◦ Take pairs of words that don't co-occur as negative 

examples
◦ Train the classifier to distinguish these by slowly adjusting 

all the embeddings to improve the classifier performance
◦ Throw away the classifier code and keep the embeddings.



Evaluating embeddings
Compare to human scores on word 
similarity-type tasks:
• WordSim-353 (Finkelstein et al., 2002)

• SimLex-999 (Hill et al., 2015)

• Stanford Contextual Word Similarity (SCWS) dataset 
(Huang et al., 2012) 

• TOEFL dataset: “levied” is closest in meaning to: 
(a) imposed, (b) believed, (c) requested, (d) correlated 



Intrinsic evalation



Compute correlation



Properties of embeddings

35

C = ±2 The nearest words to Hogwarts:
◦ Sunnydale
◦ Evernight

C = ±5 The nearest words to Hogwarts:
◦ Dumbledore
◦ Malfoy
◦ halfblood

Similarity depends on window size C



How does context window 
change word emeddings?

All embeddings were trained on English
Wikipedia. For DEPS, the corpus was tagged
with parts-of-speech using the Stanford tagger
(Toutanova et al., 2003) and parsed into labeled
Stanford dependencies (de Marneffe and Man-
ning, 2008) using an implementation of the parser
described in (Goldberg and Nivre, 2012). All to-
kens were converted to lowercase, and words and
contexts that appeared less than 100 times were
filtered. This resulted in a vocabulary of about
175,000 words, with over 900,000 distinct syntac-
tic contexts. We report results for 300 dimension
embeddings, though similar trends were also ob-
served with 600 dimensions.

4.1 Qualitative Evaluation

Our first evaluation is qualitative: we manually in-
spect the 5 most similar words (by cosine similar-
ity) to a given set of target words (Table 1).

The first target word, Batman, results in similar
sets across the different setups. This is the case for
many target words. However, other target words
show clear differences between embeddings.

In Hogwarts - the school of magic from the
fictional Harry Potter series - it is evident that
BOW contexts reflect the domain aspect, whereas
DEPS yield a list of famous schools, capturing
the semantic type of the target word. This ob-
servation holds for Turing3 and many other nouns
as well; BOW find words that associate with w,
while DEPS find words that behave like w. Turney
(2012) described this distinction as domain simi-
larity versus functional similarity.

The Florida example presents an ontologi-
cal difference; bag-of-words contexts generate
meronyms (counties or cities within Florida),
while dependency-based contexts provide cohy-
ponyms (other US states). We observed the same
behavior with other geographical locations, partic-
ularly with countries (though not all of them).

The next two examples demonstrate that simi-
larities induced from DEPS share a syntactic func-
tion (adjectives and gerunds), while similarities
based on BOW are more diverse. Finally, we ob-
serve that while both BOW5 and BOW2 yield top-
ical similarities, the larger window size result in
more topicality, as expected.

3DEPS generated a list of scientists whose name ends with
“ing”. This is may be a result of occasional POS-tagging
errors. Still, the embedding does a remarkable job and re-
trieves scientists, despite the noisy POS. The list contains
more mathematicians without “ing” further down.

Target Word BOW5 BOW2 DEPS

batman

nightwing superman superman
aquaman superboy superboy
catwoman aquaman supergirl
superman catwoman catwoman
manhunter batgirl aquaman

hogwarts

dumbledore evernight sunnydale
hallows sunnydale collinwood
half-blood garderobe calarts
malfoy blandings greendale
snape collinwood millfield

turing

nondeterministic non-deterministic pauling
non-deterministic finite-state hotelling
computability nondeterministic heting
deterministic buchi lessing
finite-state primality hamming

florida

gainesville fla texas
fla alabama louisiana
jacksonville gainesville georgia
tampa tallahassee california
lauderdale texas carolina

object-oriented

aspect-oriented aspect-oriented event-driven
smalltalk event-driven domain-specific
event-driven objective-c rule-based
prolog dataflow data-driven
domain-specific 4gl human-centered

dancing

singing singing singing
dance dance rapping
dances dances breakdancing
dancers breakdancing miming
tap-dancing clowning busking

Table 1: Target words and their 5 most similar words, as in-
duced by different embeddings.

We also tried using the subsampling option
(Mikolov et al., 2013b) with BOW contexts (not
shown). Since word2vec removes the subsam-
pled words from the corpus before creating the
window contexts, this option effectively increases
the window size, resulting in greater topicality.

4.2 Quantitative Evaluation

We supplement the examples in Table 1 with
quantitative evaluation to show that the qualita-
tive differences pointed out in the previous sec-
tion are indeed widespread. To that end, we use
the WordSim353 dataset (Finkelstein et al., 2002;
Agirre et al., 2009). This dataset contains pairs of
similar words that reflect either relatedness (top-
ical similarity) or similarity (functional similar-
ity) relations.4 We use the embeddings in a re-
trieval/ranking setup, where the task is to rank the
similar pairs in the dataset above the related ones.

The pairs are ranked according to cosine sim-
ilarities between the embedded words. We then
draw a recall-precision curve that describes the
embedding’s affinity towards one subset (“sim-
ilarity”) over another (“relatedness”). We ex-
pect DEPS’s curve to be higher than BOW2’s
curve, which in turn is expected to be higher than

4Some word pairs are judged to exhibit both types of sim-
ilarity, and were ignored in this experiment.
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Solving analogies with 
embeddings
In a word-analogy task we are given two pairs of words that 
share a relation (e.g. “man:woman”, “king:queen”). 

The identity of the fourth word (“queen”) is hidden, and we 
need to infer it based on the other three by answering

“man is to woman as king is to — ?” 

More generally, we will say a:a∗ as b:b∗.

Can we solve these with word vectors? 



Vector Arithmetic 
a:a∗ as b:b∗.  b∗ is a hidden vector.   

b∗ should be similar to the vector b − a + a∗
vector(‘king’) - vector(‘man’) + vector(‘woman’) ≈ vector(‘queen’)
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a:a∗ as b:b∗.  b∗ is a hidden vector.   
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Analogy: Embeddings capture 
relational meaning!

a:a∗ as b:b∗.  b∗ is a hidden vector.   

b∗ should be similar to the vector b − a + a∗
vector(‘king’) - vector(‘man’) + vector(‘woman’) ≈ vector(‘queen’)
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Vector Arithmetic 
a:a∗ as b:b∗.  b∗ is a hidden vector.   

b∗ should be similar to the vector b − a + a∗
vector(‘king’) - vector(‘man’) + vector(‘woman’) ≈ vector(‘queen’)
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So the analogy question can be solved by optimizing: 

3 Analogies and Vector Arithmetic

Mikolov et al. demonstrated that vector space rep-
resentations encode various relational similarities,
which can be recovered using vector arithmetic
and used to solve word-analogy tasks.

3.1 Analogy Questions

In a word-analogy task we are given two pairs of
words that share a relation (e.g. “man:woman”,
“king:queen”). The identity of the fourth word
(“queen”) is hidden, and we need to infer it based
on the other three (e.g. answering the question:
“man is to woman as king is to — ?”). In the rest
of this paper, we will refer to the four words as
a:a⇤, b:b⇤. Note that the type of the relation is
not explicitly provided in the question, and solv-
ing the question correctly (by a human) involves
first inferring the relation, and then applying it to
the third word (b).

3.2 Vector Arithmetic

Mikolov et al. showed that relations between
words are reflected to a large extent in the
offsets between their vector embeddings
(queen � king ⇡ woman � man),
and thus the vector of the hidden word b⇤ will be
similar to the vector b � a + a⇤, suggesting that
the analogy question can be solved by optimizing:

arg max
b⇤2V

(sim (b⇤, b� a + a⇤))

where V is the vocabulary excluding the question
words b, a and a⇤, and sim is a similarity mea-
sure. Specifically, they used the cosine similarity
measure, defined as:

cos (u, v) =
u · v

kukkvk

resulting in:

arg max
b⇤2V

(cos (b⇤, b� a + a⇤)) (1)

Since cosine is inverse to the angle, high cosine
similarity (close to 1) means that the vectors share
a very similar direction. Note that this metric nor-
malizes (and thus ignores) the vectors’ lengths,
unlike the Euclidean distance between them. For
reasons that will be clear later, we refer to (1) as
the 3COSADD method.

An alternative to 3COSADD is to require that
the direction of transformation be conserved:

arg max
b⇤2V

(cos (b⇤ � b, a⇤ � a)) (2)

This basically means that b⇤ � b shares the same
direction with a⇤ � a, ignoring the distances. We
refer to this method as PAIRDIRECTION. Though
it was not mentioned in the paper, Mikolov
et al. (2013c) used PAIRDIRECTION for solving
the semantic analogies of the SemEval task, and
3COSADD for solving the syntactic analogies.1

3.3 Reinterpreting Vector Arithmetic

In Mikolov et al.’s experiments, all word-vectors
were normalized to unit length. Under such nor-
malization, the arg max in (1) is mathematically
equivalent to (derived using basic algebra):

arg max
b⇤2V

(cos (b⇤, b)� cos (b⇤, a) + cos (b⇤, a⇤))
(3)

This means that solving analogy questions with
vector arithmetic is mathematically equivalent to
seeking a word (b⇤) which is similar to b and a⇤

but is different from a. Relational similarity is
thus expressed as a sum of attributional similari-
ties. While (1) and (3) are equal, we find the intu-
ition as to why (3) ought to find analogies clearer.

4 Empirical Setup

We derive explicit and neural-embedded vec-
tor representations, and compare their capacities
to recover relational similarities using objectives
3COSADD (eq. 3) and PAIRDIRECTION (eq. 2).

Underlying Corpus and Preprocessing Previ-
ous reported results on the word analogy tasks us-
ing vector arithmetics were obtained using propri-
etary corpora. To make our experiments repro-
ducible, we selected an open and widely accessi-
ble corpus – the English Wikipedia. We extracted
all sentences from article bodies (excluding ti-
tles, infoboxes, captions, etc) and filtered non-
alphanumeric tokens, allowing mid-token symbols
as apostrophes, hyphens, commas, and periods.
All the text was lowercased. Duplicates and sen-
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3 Analogies and Vector Arithmetic

Mikolov et al. demonstrated that vector space rep-
resentations encode various relational similarities,
which can be recovered using vector arithmetic
and used to solve word-analogy tasks.

3.1 Analogy Questions

In a word-analogy task we are given two pairs of
words that share a relation (e.g. “man:woman”,
“king:queen”). The identity of the fourth word
(“queen”) is hidden, and we need to infer it based
on the other three (e.g. answering the question:
“man is to woman as king is to — ?”). In the rest
of this paper, we will refer to the four words as
a:a⇤, b:b⇤. Note that the type of the relation is
not explicitly provided in the question, and solv-
ing the question correctly (by a human) involves
first inferring the relation, and then applying it to
the third word (b).

3.2 Vector Arithmetic

Mikolov et al. showed that relations between
words are reflected to a large extent in the
offsets between their vector embeddings
(queen � king ⇡ woman � man),
and thus the vector of the hidden word b⇤ will be
similar to the vector b � a + a⇤, suggesting that
the analogy question can be solved by optimizing:

arg max
b⇤2V

(sim (b⇤, b� a + a⇤))

where V is the vocabulary excluding the question
words b, a and a⇤, and sim is a similarity mea-
sure. Specifically, they used the cosine similarity
measure, defined as:

cos (u, v) =
u · v

kukkvk

resulting in:

arg max
b⇤2V

(cos (b⇤, b� a + a⇤)) (1)

Since cosine is inverse to the angle, high cosine
similarity (close to 1) means that the vectors share
a very similar direction. Note that this metric nor-
malizes (and thus ignores) the vectors’ lengths,
unlike the Euclidean distance between them. For
reasons that will be clear later, we refer to (1) as
the 3COSADD method.

An alternative to 3COSADD is to require that
the direction of transformation be conserved:

arg max
b⇤2V

(cos (b⇤ � b, a⇤ � a)) (2)

This basically means that b⇤ � b shares the same
direction with a⇤ � a, ignoring the distances. We
refer to this method as PAIRDIRECTION. Though
it was not mentioned in the paper, Mikolov
et al. (2013c) used PAIRDIRECTION for solving
the semantic analogies of the SemEval task, and
3COSADD for solving the syntactic analogies.1

3.3 Reinterpreting Vector Arithmetic

In Mikolov et al.’s experiments, all word-vectors
were normalized to unit length. Under such nor-
malization, the arg max in (1) is mathematically
equivalent to (derived using basic algebra):
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(cos (b⇤, b)� cos (b⇤, a) + cos (b⇤, a⇤))
(3)

This means that solving analogy questions with
vector arithmetic is mathematically equivalent to
seeking a word (b⇤) which is similar to b and a⇤

but is different from a. Relational similarity is
thus expressed as a sum of attributional similari-
ties. While (1) and (3) are equal, we find the intu-
ition as to why (3) ought to find analogies clearer.

4 Empirical Setup

We derive explicit and neural-embedded vec-
tor representations, and compare their capacities
to recover relational similarities using objectives
3COSADD (eq. 3) and PAIRDIRECTION (eq. 2).

Underlying Corpus and Preprocessing Previ-
ous reported results on the word analogy tasks us-
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Representing Phrases with 
vectors
Mikolov et al constructed representations for phrases as well as for 
individual words.

To learn vector representations for phrases, they first find words that 
appear frequently together but infrequently in other contexts, and
represent these n-grams as single tokens.

For example, “New York Times” and “Toronoto Maple Leafs” are 
replaced by New_York_Times and Toronoto_Maple_Leafs, but a bigram 
like “this is” remains unchanged.

Newspapers
New York New York Times Baltimore Baltimore Sun
San Jose San Jose Mercury News Cincinnati Cincinnati Enquirer

NHL Teams
Boston Boston Bruins Montreal Montreal Canadiens
Phoenix Phoenix Coyotes Nashville Nashville Predators

NBA Teams
Detroit Detroit Pistons Toronto Toronto Raptors
Oakland Golden State Warriors Memphis Memphis Grizzlies

Airlines
Austria Austrian Airlines Spain Spainair
Belgium Brussels Airlines Greece Aegean Airlines

Company executives
Steve Ballmer Microsoft Larry Page Google

Samuel J. Palmisano IBM Werner Vogels Amazon

Table 2: Examples of the analogical reasoning task for phrases (the full test set has 3218 examples).
The goal is to compute the fourth phrase using the first three. Our best model achieved an accuracy
of 72% on this dataset.

This way, we can form many reasonable phrases without greatly increasing the size of the vocabu-
lary; in theory, we can train the Skip-gram model using all n-grams, but that would be too memory
intensive. Many techniques have been previously developed to identify phrases in the text; however,
it is out of scope of our work to compare them. We decided to use a simple data-driven approach,
where phrases are formed based on the unigram and bigram counts, using

score(wi, wj) =
count(wiwj)− δ

count(wi)× count(wj)
. (6)

The δ is used as a discounting coefficient and prevents too many phrases consisting of very infre-
quent words to be formed. The bigrams with score above the chosen threshold are then used as
phrases. Typically, we run 2-4 passes over the training data with decreasing threshold value, allow-
ing longer phrases that consists of several words to be formed. We evaluate the quality of the phrase
representations using a new analogical reasoning task that involves phrases. Table 2 shows examples
of the five categories of analogies used in this task. This dataset is publicly available on the web2.

4.1 Phrase Skip-Gram Results

Starting with the same news data as in the previous experiments, we first constructed the phrase
based training corpus and then we trained several Skip-gram models using different hyper-
parameters. As before, we used vector dimensionality 300 and context size 5. This setting already
achieves good performance on the phrase dataset, and allowed us to quickly compare the Negative
Sampling and the Hierarchical Softmax, both with and without subsampling of the frequent tokens.
The results are summarized in Table 3.

The results show that while Negative Sampling achieves a respectable accuracy even with k = 5,
using k = 15 achieves considerably better performance. Surprisingly, while we found the Hierar-
chical Softmax to achieve lower performance when trained without subsampling, it became the best
performing method when we downsampled the frequent words. This shows that the subsampling
can result in faster training and can also improve accuracy, at least in some cases.

2code.google.com/p/word2vec/source/browse/trunk/questions-phrases.txt

Method Dimensionality No subsampling [%] 10
−5 subsampling [%]

NEG-5 300 24 27
NEG-15 300 27 42

HS-Huffman 300 19 47

Table 3: Accuracies of the Skip-gram models on the phrase analogy dataset. The models were
trained on approximately one billion words from the news dataset.
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Vector compositionality
Mikolov et al experiment with using element-wise addition to compose 
vectors

NEG-15 with 10−5 subsampling HS with 10−5 subsampling
Vasco de Gama Lingsugur Italian explorer
Lake Baikal Great Rift Valley Aral Sea
Alan Bean Rebbeca Naomi moonwalker
Ionian Sea Ruegen Ionian Islands
chess master chess grandmaster Garry Kasparov

Table 4: Examples of the closest entities to the given short phrases, using two different models.

Czech + currency Vietnam + capital German + airlines Russian + river French + actress
koruna Hanoi airline Lufthansa Moscow Juliette Binoche

Check crown Ho Chi Minh City carrier Lufthansa Volga River Vanessa Paradis
Polish zolty Viet Nam flag carrier Lufthansa upriver Charlotte Gainsbourg
CTK Vietnamese Lufthansa Russia Cecile De

Table 5: Vector compositionality using element-wise addition. Four closest tokens to the sum of two
vectors are shown, using the best Skip-gram model.

To maximize the accuracy on the phrase analogy task, we increased the amount of the training data
by using a dataset with about 33 billion words. We used the hierarchical softmax, dimensionality
of 1000, and the entire sentence for the context. This resulted in a model that reached an accuracy
of 72%. We achieved lower accuracy 66% when we reduced the size of the training dataset to 6B
words, which suggests that the large amount of the training data is crucial.

To gain further insight into how different the representations learned by different models are, we did
inspect manually the nearest neighbours of infrequent phrases using various models. In Table 4, we
show a sample of such comparison. Consistently with the previous results, it seems that the best
representations of phrases are learned by a model with the hierarchical softmax and subsampling.

5 Additive Compositionality

We demonstrated that the word and phrase representations learned by the Skip-gram model exhibit
a linear structure that makes it possible to perform precise analogical reasoning using simple vector
arithmetics. Interestingly, we found that the Skip-gram representations exhibit another kind of linear
structure that makes it possible to meaningfully combine words by an element-wise addition of their
vector representations. This phenomenon is illustrated in Table 5.

The additive property of the vectors can be explained by inspecting the training objective. The word
vectors are in a linear relationship with the inputs to the softmax nonlinearity. As the word vectors
are trained to predict the surrounding words in the sentence, the vectors can be seen as representing
the distribution of the context in which a word appears. These values are related logarithmically
to the probabilities computed by the output layer, so the sum of two word vectors is related to the
product of the two context distributions. The product works here as the AND function: words that
are assigned high probabilities by both word vectors will have high probability, and the other words
will have low probability. Thus, if “Volga River” appears frequently in the same sentence together
with the words “Russian” and “river”, the sum of these two word vectors will result in such a feature
vector that is close to the vector of “Volga River”.

6 Comparison to Published Word Representations

Many authors who previously worked on the neural network based representations of words have
published their resulting models for further use and comparison: amongst the most well known au-
thors are Collobert and Weston [2], Turian et al. [17], and Mnih and Hinton [10]. We downloaded
their word vectors from the web3. Mikolov et al. [8] have already evaluated these word representa-
tions on the word analogy task, where the Skip-gram models achieved the best performance with a
huge margin.

3http://metaoptimize.com/projects/wordreprs/
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To gain further insight into how different the representations learned by different models are, we did
inspect manually the nearest neighbours of infrequent phrases using various models. In Table 4, we
show a sample of such comparison. Consistently with the previous results, it seems that the best
representations of phrases are learned by a model with the hierarchical softmax and subsampling.

5 Additive Compositionality

We demonstrated that the word and phrase representations learned by the Skip-gram model exhibit
a linear structure that makes it possible to perform precise analogical reasoning using simple vector
arithmetics. Interestingly, we found that the Skip-gram representations exhibit another kind of linear
structure that makes it possible to meaningfully combine words by an element-wise addition of their
vector representations. This phenomenon is illustrated in Table 5.

The additive property of the vectors can be explained by inspecting the training objective. The word
vectors are in a linear relationship with the inputs to the softmax nonlinearity. As the word vectors
are trained to predict the surrounding words in the sentence, the vectors can be seen as representing
the distribution of the context in which a word appears. These values are related logarithmically
to the probabilities computed by the output layer, so the sum of two word vectors is related to the
product of the two context distributions. The product works here as the AND function: words that
are assigned high probabilities by both word vectors will have high probability, and the other words
will have low probability. Thus, if “Volga River” appears frequently in the same sentence together
with the words “Russian” and “river”, the sum of these two word vectors will result in such a feature
vector that is close to the vector of “Volga River”.

6 Comparison to Published Word Representations

Many authors who previously worked on the neural network based representations of words have
published their resulting models for further use and comparison: amongst the most well known au-
thors are Collobert and Weston [2], Turian et al. [17], and Mnih and Hinton [10]. We downloaded
their word vectors from the web3. Mikolov et al. [8] have already evaluated these word representa-
tions on the word analogy task, where the Skip-gram models achieved the best performance with a
huge margin.

3http://metaoptimize.com/projects/wordreprs/
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Embeddings can help study 
word history!
Train embeddings on old books to study 
changes in word meaning!!

Will HamiltonDan Jurafsky



Diachronic word embeddings for 
studying language change!

5
2

1900 1950 2000

vs.

Word vectors for 1920 Word vectors 1990

“dog” 1920 word vector
“dog” 1990 word vector



Visualizing changes

Project 300 dimensions down into 2

~30 million books, 1850-1990, Google Books data



Visualizing changes

Project 300 dimensions down into 2

~30 million books, 1850-1990, Google Books data
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Embeddings and bias



Embeddings reflect cultural bias

Ask “Paris : France :: Tokyo : x” 
◦ x = Japan

Ask “father : doctor :: mother : x” 
◦ x = nurse

Ask “man : computer programmer :: woman : x” 
◦ x = homemaker

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and 
Adam T. Kalai. "Man is to computer programmer as woman is to 
homemaker? debiasing word embeddings." In Advances in Neural 
Information Processing Systems, pp. 4349-4357. 2016.



Measuring cultural bias

Implicit Association test (Greenwald et al 1998): How associated are 
◦ concepts (flowers, insects) &  attributes (pleasantness, unpleasantness)?
◦ Studied by measuring timing latencies for categorization.

Psychological findings on US participants:
◦ African-American names are associated with unpleasant words (more than European-

American names)
◦ Male names associated more with math, female names with arts
◦ Old people's names with unpleasant words, young people with pleasant words.



Embeddings reflect cultural bias

Caliskan et al. replication with embeddings:
◦ African-American names (Leroy, Shaniqua) had a higher GloVe

cosine with unpleasant words  (abuse, stink, ugly)
◦ European American names (Brad, Greg, Courtney) had a higher 

cosine with pleasant words (love, peace, miracle)

Embeddings reflect and replicate all sorts of pernicious biases.

Aylin Caliskan, Joanna J. Bruson and Arvind Narayanan. 2017. Semantics derived automatically from 
language corpora contain human-like biases. Science 356:6334, 183-186.



Directions
Debiasing algorithms for embeddings
◦ Bolukbasi, Tolga, Chang, Kai-Wei, Zou, James Y., 

Saligrama, Venkatesh, and Kalai, Adam T. (2016). Man is 
to computer programmer as woman is to homemaker?
debiasing word embeddings. In Advances in Neural Infor-
mation Processing Systems, pp. 4349–4357. 

Use embeddings as a historical tool to study bias



Embeddings as a window onto history

Use the Hamilton historical embeddings
The cosine similarity of embeddings for decade X 
for occupations (like teacher) to male vs female 
names
◦ Is correlated with the actual percentage of women 

teachers in decade X

Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and James Zou, (2018). Word embeddings quantify 100 years of gender 
and ethnic stereotypes. Proceedings of the National Academy of Sciences, 115(16), E3635–E3644 



History of biased framings of women

Embeddings for competence adjectives are 
biased toward men
◦ Smart, wise, brilliant, intelligent, resourceful, 

thoughtful, logical, etc.

This bias is slowly decreasing 

Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and James Zou, (2018). Word embeddings quantify 100 years of gender 
and ethnic stereotypes. Proceedings of the National Academy of Sciences, 115(16), E3635–E3644 



Princeton Trilogy experiments
Study 1: Katz and Braley (1933)
Investigated whether traditional social stereotypes had a cultural basis
Ask 100 male students from Princeton University to choose five traits that 
characterized different ethnic groups (for example Americans, Jews, 
Japanese, Negroes) from a list of 84 word
84% of the students said that Negroes were superstitious and 79% said that 
Jews were shrewd. They were positive towards their own group.
Study 2: Gilbert (1951)
Less uniformity of agreement about unfavorable traits than in 1933.

Study 3: Karlins et al. (1969)
Many students objected to the task but this time there was greater
agreement on the stereotypes assigned to the different groups compared
with the 1951 study. Interpreted as a re-emergence of social stereotyping
but in the direction more favorable stereotypical images.



Embeddings reflect ethnic 
stereotypes over time

• Princeton trilogy experiments
• Attitudes toward ethnic groups (1933, 

1951, 1969) scores for adjectives
• industrious, superstitious, nationalistic, etc

• Cosine of Chinese name embeddings with 
those adjective embeddings correlates with 
human ratings.

Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and James Zou, (2018). Word embeddings quantify 100 years of gender 
and ethnic stereotypes. Proceedings of the National Academy of Sciences, 115(16), E3635–E3644 



Change in linguistic framing 
1910-1990
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Table 3. Top Asian (vs. White) adjectives in 1910, 1950, and 1990
by relative norm difference in the COHA embedding

1910 1950 1990

Irresponsible Disorganized Inhibited
Envious Outrageous Passive
Barbaric Pompous Dissolute
Aggressive Unstable Haughty
Transparent Effeminate Complacent
Monstrous Unprincipled Forceful
Hateful Venomous Fixed
Cruel Disobedient Active
Greedy Predatory Sensitive
Bizarre Boisterous Hearty

qualitatively through the results in the snapshot analysis for gen-
der, which replicates prior work, and quantitatively as the metrics
correlate highly with one another, as shown in SI Appendix,
section A.5.

Furthermore, we primarily use linear models to fit the relation-
ship between embedding bias and various external metrics; how-
ever, the true relationships may be nonlinear and warrant further
study. This concern is especially salient when studying ethnic
stereotypes over time in the United States, as immigration dras-
tically shifts the size of each group as a percentage of the popu-
lation, which may interact with stereotypes and occupation per-
centages. However, the models are sufficient to show consistency
in the relationships between embedding bias and external metrics
across datasets over time. Further, the results do not qualitatively
change when, for example, population logit proportion instead
of raw percentage difference is used, as in ref. 44; we reproduce
our primary figures with such a transformation in SI Appendix,
section A.6.

Another potential concern may be the dependency of our
results on the specific word lists used and that the recall of
our methods in capturing human biases may not be adequate.
We take extensive care to reproduce similar results with other
word lists and types of measurements to demonstrate recall. For
example, in SI Appendix, section B.1, we repeat the static occu-
pation analysis using only professional occupations and repro-
duce an identical figure to Fig. 1 in SI Appendix, section B.1.
Furthermore, the plots themselves contain bootstrapped confi-
dence intervals; i.e., the coefficients for random subsets of the
occupations/adjectives and the intervals are tight. Similarly, for
adjectives, we use two different lists: one list from refs. 6 and 7
for which we have labeled stereotype scores and then a larger
one for the rest of the analysis where such scores are not needed.
We note that we do not tune either the embeddings or the word
lists, instead opting for the largest/most general publicly avail-
able data. For reproducibility, we share our code and all word
lists in a repository. That our methods replicate across many dif-
ferent embeddings and types of biases measured suggests their
generalizability.

A common challenge in historical analysis is that the written
text in, say 1910, may not completely reflect the popular social
attitude of that time. This is an important caveat to consider in
interpreting the results of the embeddings trained on these ear-
lier text corpora. The fact that the embedding bias for gender
and ethnic groups does track with census proportion is a positive
control that the embedding is still capturing meaningful patterns
despite possible limitations in the training text. Even this con-
trol may be limited in that the census proportion does not fully
capture gender or ethnic associations, even in the present day.
However, the written text does serve as a window into the atti-
tudes of the day as expressed in popular culture, and this work
allows for a more systematic study of such text.

Another limitation of our current approach is that all of the
embeddings used are fully “black box,” where the dimensions
have no inherent meaning. To provide a more causal explana-
tion of how the stereotypes appear in language, and to under-
stand how they function, future work can leverage more recent
embedding models in which certain dimensions are designed to
capture various aspects of language, such as the polarity of a
word or its parts of speech (45). Similarly, structural proper-
ties of words—beyond their census information or human-rated
stereotypes—can be studied in the context of these dimensions.
One can also leverage recent Bayesian embeddings models and
train more fine-grained embeddings over time, rather than a sep-
arate embedding per decade as done in this work (46, 47). These
approaches can be used in future work.

We view the main contribution of our work as introducing
and validating a framework for exploring the temporal dynam-
ics of stereotypes through the lens of word embeddings. Our
framework enables the computation of simple but quantitative
measures of bias as well as easy visualizations. It is important to
note that our goal in Quantifying Gender Stereotypes and Quanti-

fying Ethnic Stereotypes is quantitative exploratory analysis rather
than pinning down specific causal models of how certain stereo-
types arise or develop, although the analysis in Occupational

Stereotypes Beyond Census Data suggests that common language
is more biased than one would expect based on external, objec-
tive metrics. We believe our approach sharpens the analysis of
large cultural shifts in US history; e.g., the women’s movement
of the 1960s correlates with a sharp shift in the encoding matrix
(Fig. 4) as well as changes in the biases associated with spe-
cific occupations and gender-biased adjectives (e.g., hysterical vs.
emotional).

In standard quantitative social science, machine learning is
used as a tool to analyze data. Our work shows how the artifacts
of machine learning (word embeddings here) can themselves
be interesting objects of sociological analysis. We believe this
paradigm shift can lead to many fruitful studies.

Materials and Methods

In this section we describe the datasets, embeddings, and word lists used,
as well as how bias is quantified. More detail, including descriptions of
additional embeddings and the full word lists, are in SI Appendix, section
A. All of our data and code are available on GitHub (https://github.com/
nikhgarg/EmbeddingDynamicStereotypes), and we link to external data
sources as appropriate.

Embeddings. This work uses several pretrained word embeddings publicly
available online; refer to the respective sources for in-depth discussion of
their training parameters. These embeddings are among the most com-
monly used English embeddings, vary in the datasets on which they were

Fig. 6. Asian bias score over time for words related to outsiders in COHA
data. The shaded region is the bootstrap SE interval.
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Change in association of Chinese names with adjectives 
framed as "othering" (barbaric, monstrous, bizarre)

Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and James Zou, (2018). Word embeddings quantify 100 years of gender 
and ethnic stereotypes. Proceedings of the National Academy of Sciences, 115(16), E3635–E3644 



Changes in framing:
adjectives associated with Chinese
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Table 3. Top Asian (vs. White) adjectives in 1910, 1950, and 1990
by relative norm difference in the COHA embedding

1910 1950 1990

Irresponsible Disorganized Inhibited
Envious Outrageous Passive
Barbaric Pompous Dissolute
Aggressive Unstable Haughty
Transparent Effeminate Complacent
Monstrous Unprincipled Forceful
Hateful Venomous Fixed
Cruel Disobedient Active
Greedy Predatory Sensitive
Bizarre Boisterous Hearty

qualitatively through the results in the snapshot analysis for gen-
der, which replicates prior work, and quantitatively as the metrics
correlate highly with one another, as shown in SI Appendix,
section A.5.

Furthermore, we primarily use linear models to fit the relation-
ship between embedding bias and various external metrics; how-
ever, the true relationships may be nonlinear and warrant further
study. This concern is especially salient when studying ethnic
stereotypes over time in the United States, as immigration dras-
tically shifts the size of each group as a percentage of the popu-
lation, which may interact with stereotypes and occupation per-
centages. However, the models are sufficient to show consistency
in the relationships between embedding bias and external metrics
across datasets over time. Further, the results do not qualitatively
change when, for example, population logit proportion instead
of raw percentage difference is used, as in ref. 44; we reproduce
our primary figures with such a transformation in SI Appendix,
section A.6.

Another potential concern may be the dependency of our
results on the specific word lists used and that the recall of
our methods in capturing human biases may not be adequate.
We take extensive care to reproduce similar results with other
word lists and types of measurements to demonstrate recall. For
example, in SI Appendix, section B.1, we repeat the static occu-
pation analysis using only professional occupations and repro-
duce an identical figure to Fig. 1 in SI Appendix, section B.1.
Furthermore, the plots themselves contain bootstrapped confi-
dence intervals; i.e., the coefficients for random subsets of the
occupations/adjectives and the intervals are tight. Similarly, for
adjectives, we use two different lists: one list from refs. 6 and 7
for which we have labeled stereotype scores and then a larger
one for the rest of the analysis where such scores are not needed.
We note that we do not tune either the embeddings or the word
lists, instead opting for the largest/most general publicly avail-
able data. For reproducibility, we share our code and all word
lists in a repository. That our methods replicate across many dif-
ferent embeddings and types of biases measured suggests their
generalizability.

A common challenge in historical analysis is that the written
text in, say 1910, may not completely reflect the popular social
attitude of that time. This is an important caveat to consider in
interpreting the results of the embeddings trained on these ear-
lier text corpora. The fact that the embedding bias for gender
and ethnic groups does track with census proportion is a positive
control that the embedding is still capturing meaningful patterns
despite possible limitations in the training text. Even this con-
trol may be limited in that the census proportion does not fully
capture gender or ethnic associations, even in the present day.
However, the written text does serve as a window into the atti-
tudes of the day as expressed in popular culture, and this work
allows for a more systematic study of such text.

Another limitation of our current approach is that all of the
embeddings used are fully “black box,” where the dimensions
have no inherent meaning. To provide a more causal explana-
tion of how the stereotypes appear in language, and to under-
stand how they function, future work can leverage more recent
embedding models in which certain dimensions are designed to
capture various aspects of language, such as the polarity of a
word or its parts of speech (45). Similarly, structural proper-
ties of words—beyond their census information or human-rated
stereotypes—can be studied in the context of these dimensions.
One can also leverage recent Bayesian embeddings models and
train more fine-grained embeddings over time, rather than a sep-
arate embedding per decade as done in this work (46, 47). These
approaches can be used in future work.

We view the main contribution of our work as introducing
and validating a framework for exploring the temporal dynam-
ics of stereotypes through the lens of word embeddings. Our
framework enables the computation of simple but quantitative
measures of bias as well as easy visualizations. It is important to
note that our goal in Quantifying Gender Stereotypes and Quanti-

fying Ethnic Stereotypes is quantitative exploratory analysis rather
than pinning down specific causal models of how certain stereo-
types arise or develop, although the analysis in Occupational

Stereotypes Beyond Census Data suggests that common language
is more biased than one would expect based on external, objec-
tive metrics. We believe our approach sharpens the analysis of
large cultural shifts in US history; e.g., the women’s movement
of the 1960s correlates with a sharp shift in the encoding matrix
(Fig. 4) as well as changes in the biases associated with spe-
cific occupations and gender-biased adjectives (e.g., hysterical vs.
emotional).

In standard quantitative social science, machine learning is
used as a tool to analyze data. Our work shows how the artifacts
of machine learning (word embeddings here) can themselves
be interesting objects of sociological analysis. We believe this
paradigm shift can lead to many fruitful studies.

Materials and Methods

In this section we describe the datasets, embeddings, and word lists used,
as well as how bias is quantified. More detail, including descriptions of
additional embeddings and the full word lists, are in SI Appendix, section
A. All of our data and code are available on GitHub (https://github.com/
nikhgarg/EmbeddingDynamicStereotypes), and we link to external data
sources as appropriate.

Embeddings. This work uses several pretrained word embeddings publicly
available online; refer to the respective sources for in-depth discussion of
their training parameters. These embeddings are among the most com-
monly used English embeddings, vary in the datasets on which they were

Fig. 6. Asian bias score over time for words related to outsiders in COHA
data. The shaded region is the bootstrap SE interval.
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Conclusion
Embeddings = vector models of meaning
◦ More fine-grained than just a string or index
◦ Especially good at modeling similarity/analogy

◦ Just download them and use cosines!!
◦ Can use sparse models (tf-idf) or dense models (word2vec, 

GLoVE)

◦ Useful in practice but know they encode cultural 
stereotypes


