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tf-idf and PPMI vectors are

> long (length |V|= 20,000 to
50,000)

- sparse (most elements are zero)




vectors which are
- short (length 50-1000)

- dense (most elements are non-
zero)




Sparse versus

dense vectors

Why dense vectors?

o

Short vectors may be easier to use as features
in machine learning (fewer weights to tune)

Dense vectors may generalize better than
storing explicit counts

They may do better at capturing synonymy:

o car and automobile are synonyms; but are distinct
dimensions in sparse vectors

o aword with car as a neighbor and a word with
automobile as a neighbor should be similar, but aren't

In practice, they work better



Dense embeddings
you can download!

Word2vec (Mikolov et al.)

https://code.google.com/archive/p/word2v

ec/

Fasttext http://www.fasttext.cc/

Glove (Pennington, Socher, Manning)

http://nlp.stanford.edu/projects/glove/

Magnitude (Patel and Sands)

https://github.com/plasticityai/magnitude



https://code.google.com/archive/p/word2vec/
http://www.fasttext.cc/
http://nlp.stanford.edu/projects/glove/
https://github.com/plasticityai/magnitude

Word2vec

Popular embedding method
Very fast to train
Code available on the web

ldea: predict rather than count




Word2vec

°Instead of counting how often each
word w occurs near "apricot”

°Train a classifier on a binary
prediction task:
°|s w likely to show up near "apricot"?

°We don’t actually care about this task

c But we'll take the learned classifier weights
as the word embeddings



Brilliant insight
* Use running text as implicitly supervised
training datal

* A word s near apricot
* Acts as gold ‘correct answer’ to the question
* “Is word w likely to show up near apricot?”

* No need for hand-labeled supervision

* The idea comes from neural language
modeling (Bengio et al. 2003))




Word2Vec: Skip-Gram Task

Word2vec provides a variety of options. Let's do
o "skip-gram with negative sampling" (SGNS)




Skip-gram algorithm
1. Treat the target word and a neighboring
context word as positive examples.

2. Randomly sample other words in the
exicon to get negative samples

3. Use logistic regression to train a classifier
to distinguish those two cases

4. Use the weights as the embeddings



Skip-Gram Training Data

Training sentence:
... lemon, a tablespoon of apricot jam a pinch ...

cl c2 target c3 c4

Assume context words are those in +/- 2
word window




Skip-Gram Goal

Given a tuple (t,c) = target, context

°(apricot, jam)
°(apricot, aardvark)

Return probability that c is a real context word:

P(+]|t,c)
P(-|t,c) = 1-P(+|t,c)




How to compute p(+]t,c)?

ntuition:
> Words are likely to appear near similar words

> Model similarity with dot-product!
o Similarity(t,c) = t- c

Problem:

> Dot product is not a probability!
o (Neither is cosine)

N
dot-product(V,w) =v-w = E Viw; = Viw] +vaws + ... Fvywa
i=1




Turning dot product into a
probability

The sigmoid lies between 0 and 1:
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Turning dot product into a
probability

1

P(‘l“t,C) — 1_|_e—t-C




Turning dot product into a
probability

1

P(‘l“t,C) — 1_|_e—t-C

P(—|t,c)

1 —P(+|t,c)

e—t°C

1 e t¢




For all the context words:

Assume all context words are
independent

K
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For all t

Assume a

ne context words:

| context words are

independent
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Popping back

up

Now we have a way of computing the
probability of p(+]|t,c), which is the
probability that cis a real context
word for t.

But, we need embeddings for t and ¢
to doit.

Where do we get those embeddings?
Word2vec learns them automatically!

It starts with an initial set of
embedding vectors and then
iteratively shifts the embedding of
each word w to be more like the
embeddings of words that occur
nearby in texts, and less like the
embeddings of words that don’t
occur nearby.



Skip-Gram Training Data

Training sentence:
... lemon, a tablespoon of apricot jam a pinch ...

cl c2 t c3 c4

Training data: input/output pairs centering
on apricot

Assume a +/- 2 word window



Skip-Gram Training
Training sentence:

tablespoon of apricot jam a

cl c2 t c3 c4

positive examples +

t c For each positive example,

we'll create k negative

apricot tablespoon
: examples.
apricot of

apricot preserves Using noise words
apricot or Any random word that isn't t




How many noise words?

‘raining sentence:

tablespoon of apricot jam a

cl c2 t c3 c4
positive examples + negative examples -
t C t C t C
apricot tablespoon apricot aardvark apricot twelve
apricot of apricot puddle apricot hello

apricot where  apricot dear

apricot preserves . . .
apricot coaxial apricot forever

apricot or



Choosing noise words

Could pick w according to their unigram frequency P(w)

More common to chosen then according to p,(w)

count (w)?

B >, count(w)®

a= % works well because it gives rare noise words slightly higher
probability

Py (w)

To show this, imagine two events p(a)=.99 and p(b) = .01:

.99.75

Fala) = g5 o175 =7
.01.75

Py(b) = =.03

9975 +.01-7



_earning the classifier

terative process.

We'll start with O or random weights

Then adjust the word weights to
> make the positive pairs more likely
> and the negative pairs less likely

over the entire training set:



Setup

Let's represent words as vectors of some length (say
300), randomly initialized.

So we start with 300 * V random parameters

Over the entire training set, we’d like to adjust those
word vectors such that we
> Maximize the similarity of the target word, context
word pairs (t,c) drawn from the positive data

> Minimize the similarity of the (t,c) pairs drawn from
the negative data.



Objective Criteria

We want to maximize...
Z logP(+]t,c) + Z logP(—|t, c)
(t,c)E+ (t,c)E—

Maximize the + label for the pairs from the positive
training data, and the — label for the pairs sample
from the negative data.




Focusing on one target word t:

k
log P(+|t,c) + ZlogP(—\t,n,-)
i=1
k

logo(c-t)+ Zlog o(—n;-t)
i=1

k
1 1
— 1 |
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Train using gradient descent

Actually learns two separate embedding matrices W and C

Can use W and throw away C, or merge them somehow




Summary: How to learn word2vec
(skip-gram) embeddings

Start with V random 300-dimensional vectors as
initial embeddings

Use logistic regression, the second most basic
classifier used in machine learning after naive
Bayes

> Take a corpus and take pairs of words that co-occur as
positive examples

> Take pairs of words that don't co-occur as negative
examples

° Train the classifier to distinguish these by slowly adjusting
all the embeddings to improve the classifier performance

° Throw away the classifier code and keep the embeddings.



Evaluating embeddings

Compare to human scores on word
similarity-type tasks:

* WordSim-353 (Finkelstein et al., 2002)

* SimLex-999 (Hill et al., 2015)

 Stanford Contextual Word Similarity (SCWS) dataset
(Huang et al., 2012)

* TOEFL dataset: “levied” is closest in meaning to:
(a) imposed, (b) believed, (c) requested, (d) correlated




Intrinsic evalation
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Properties of embeddings

Similarity depends on window size C

C =12 The nearest words to Hogwarts:
> Sunnydale
> Evernight

C = 15 The nearest words to Hogwarts:
> Dumbledore

> Malfoy
> halfblood




How does context window
change word emeddings?

Target Word | BOW5 BoWw?2 DEPS
nightwing superman superman
aquaman superboy superboy

batman catwoman aquaman supergirl
superman catwoman catwoman
manhunter batgirl aquaman
dumbledore evernight sunnydale
hallows sunnydale collinwood

hogwarts half-blood garderobe calarts
malfoy blandings greendale
snape collinwood millfield
gainesville fla texas
fla alabama louisiana

florida jacksonville gainesville georgia
tampa tallahassee california
lauderdale texas carolina

aenect-oriented

acpect-oriented

event-driven



Solving analogies with
embeddings

In a word-analogy task we are given two pairs of words that
share a relation (e.g. “man:woman”, “king:queen”).

The identity of the fourth word (“queen”) is hidden, and we
need to infer it based on the other three by answering

“man is to woman as king is to — ?”
More generally, we will say a:a* as b:bx*.

Can we solve these with word vectors?



Vector Arithmetic

a:a* as b:b*. b#* is a hidden vector.
b* should be similar to the vectorb-a + ax

vector(‘king’) - vector(‘man’) + vector(‘woman’) = vector(‘queen’)

king

queen

Mman

woman



Vector Arithmetic

a:a* as b:b*. b#* is a hidden vector.
b* should be similar to the vectorb-a + ax

vector(‘king’) - vector(‘man’) + vector(‘woman’) = vector(‘queen’)

king

queen

Mman

woman



Analogy: Embeddings capture
relational meaning!

a:a* as b:b*. b#* is a hidden vector.
b* should be similar to the vectorb-a + ax

vector(‘king’) - vector(‘man’) + vector(‘woman’) = vector(‘queen’)

king

+woman queen




Vector Arithmetic

a:a* as b:b*. b#* is a hidden vector.
b* should be similar to the vectorb-a + ax

vector(‘king’) - vector(‘man’) + vector(‘woman’) = vector(‘queen’)

king

+woman queen

So the analogy question can be solved by optimizing: arg ll;na‘}/( (COS (b*, b—a-+ CL*))
e




Analogy: Embeddings capture
relational meaning!

vector(‘king’) - vector(‘man’) + vector(‘woman’) = vector(‘queen’)

vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) = vector(‘Rome’)

WOMAN

MAN /
UNCLE
QUEEN

KING

AUNT

KINGS

N\

QUEENS

AN

QUEEN

KING




Vector Arithmetic

If all word-vectors are normalized to unit length then

arg max (cos (b, b—a+a"))

is equivalent to

arg max (cos (b",b) — cos (b*, a) + cos (b*,a™))
d=




Vector Arithmetic

Alternatively, we can require that the direction of the
transformation be maintained.

arg max (cos (b*,b—a+a™))

arg max (cos (b* — b,a” — a))
b*eV

This basically means that b* — b shares the same direction
with a*x - a, ignoring the distances
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Representing Phrases with
vectors

Mikolov et al constructed representations for phrases as well as for
individual words.

To learn vector representations for phrases, they first find words that
appear frequently together but infrequently in other contexts, and
represent these n-grams as single tokens.

For example, “New York Times” and “Toronoto Maple Leafs” are
replaced by New_York Times and Toronoto_Maple_Leafs, but a bigram
like “this is” remains unchanged.

count(w;w;) — 0

score(wi, w;) = count(w;) X count(w, )



Analogical reasoning task for
phrases

Newspapers
New York New York Times Baltimore Baltimore Sun
San Jose San Jose Mercury News Cincinnati Cincinnati Enquirer
NHL Teams
Boston Boston Bruins Montreal Montreal Canadiens
Phoenix Phoenix Coyotes Nashville Nashville Predators
NBA Team
Detroit Detroit Pistons Toronto Toronto Raptors
Oakland Golden State Warriors Memphis Memphis Grizzlies
Airlines
Austria Austrian Airlines Spain Spainair
Belgium Brussels Airlines Greece Aegean Airlines
Company executives
Steve Ballmer Microsoft Larry Page Google
Samuel J. Palmisano IBM Werner Vogels Amazon




Vector compositionality

Mikolov et al experiment with using element-wise addition to compose

vectors

German + airlines

airline Lufthansa
carrier Lufthansa
flag carrier Lufthansa
Lufthansa

Czech + currency | Vietnam + capital
koruna Hanoi
Check crown Ho Chi Minh City
Polish zolty Viet Nam
CTK Vietnamese

Russian + river French + actress

Moscow Juliette Binoche

Volga River Vanessa Paradis

upriver Charlotte Gainsbourg
Russia Cecile De




Published as a conference paper at ICLR 2017

A SIMPLE BUT TOUGH-TO-BEAT BASELINE FOR SEN-
TENCE EMBEDDINGS

Sanjeev Arora, Yingyu Liang, Tengyu Ma
Princeton University
{arora, yingyul, tengyu}@cs.princeton.edu

ABSTRACT

The success of neural network methods for computing word embeddings has mo-
tivated methods for generating semantic embeddings of longer pieces of text, such
as sentences and paragraphs. Surprisingly, Wieting et al (ICLR’16) showed that
such complicated methods are outperformed, especially in out-of-domain (transfer
learning) settings, by simpler methods involving mild retraining of word embed-
dings and basic linear regression. The method of Wieting et al. requires retraining
with a substantial labeled dataset such as Paraphrase Database (Ganitkevitch et
al., 2013).

The current paper goes further, showing that the following completely unsuper-
vised sentence embedding is a formidable baseline: Use word embeddings com-
puted using one of the popular methods on unlabeled corpus like Wikipedia, rep-
resent the sentence by a weighted average of the word vectors, and then modify




Embeddings can help study
word history!

Train embeddings on old books to study
changes in word meaning!!

Dan Jurafsky Will Hamilton




Diachronic word embeddings for
studying language change!

Word vectors for 1920 Word vectors 1990

“‘dog” 1990 word vegtor
“dog” 1920 worﬁ\ f

1 900 1950 2000




Visualizing changes

Project 300 dimensions down into 2

a i 9ay (1900s)

sweet

flaunting cheerful

tasteful

pleasant
frolicsome

witty Y gay (1950s)
bright

gays isexual

gay (1990s) COOsexual
leshian

b
spread
broadcast (1 8505)582%\/\/
. SOWS
circulated scatter
broadcast (1900s)
newspapers
television
radio
hhc broadcast (1990s)

~30 million books, 1850-1990, Google Books data

C solemn
awful (1850s)

majestic
awe
dread gensive
gloomy

horrible

appalliwg terrible
awful (1900s)
wonderful
awful (1990s)

avvfullyve”‘d



gay |oa| broadcast | 'brod kast

adjective (gayer, gayest)

1 (of a person) homosexual (used especially of a man):

verb (past and past participle broadcast) [with object]

1 transmit (a program or some information) by radio or television

P h é Ui n | (@s noun broadcasting) :

)

» relating to or used by

a N.

ce

» brightly colored; showy; brilliant: a

a . 9ay (1900s) b
spread
flaunting sweet
tasteful Eheeritl SOW
broadcast (1850s)..... |
pleasant ( )beég”w
frolicsome oo
witty Ygay (ENCUNESEN

adjective

1 very bad or unpleasant:
Isexual , s

homose  extremely shocking; horrific: Jl, bloc ¢
gay (1 9903) » (of a person) very unwell, troubled, or unhappy:
lesbian for being so angry m | you : ‘

gays

2 [attributive] used to emphasize the extent of something,
especially something unpleasant or negative: /\

~30 million boq

vic inspiring reverential wonder or fear.

2 scatter (seeds) by hand or machine rather than placing in drills or rows.

C solemn
awful (1850s)

majestic
awe
dread ensive
gloomy

horrible

appalliwg terrible
awful (1900s) , ,
wonderful
awful (1990s)
. sweird
awfully



The evolution of sentiment words

Sentiment of terrific

1860 1900 1940 1980

ter-rif-ic | ta'rifik |

adjective

1 of great size, amount, or intensity: there was a terrific bang.
» informal extremely good; excellent: it's been such a terrific day | you look terrific

2 archaic causing terror: his body presented a terrific emblem of death.

ORIGIN

mid 17th century (in ): from Latin terrificus, from terrere ‘frighte




Embeddings and bias




Embeddings reflect cultural bias

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and
Adam T. Kalai. "Man is to computer programmer as woman is to
homemaker? debiasing word embeddings." In Advances in Neural
Information Processing Systems, pp. 4349-4357. 2016.

Ask “Paris : France :: Tokyo : x”
°X = Japan

Ask “father : doctor :: mother : x”
°X = nurse

Ask “man : computer programmer :: woman : x”
°Xx = homemaker




Measuring cultural bias

Implicit Association test (Greenwald et al 1998): How associated are
o concepts (flowers, insects) & attributes (pleasantness, unpleasantness)?
o Studied by measuring timing latencies for categorization.

Psychological findings on US participants:

o African-American names are associated with unpleasant words (more than European-
American names)

> Male names associated more with math, female names with arts
> Old people's names with unpleasant words, young people with pleasant words.



Embeddings reflect cultural bias

Aylin Caliskan, Joanna J. Bruson and Arvind Narayanan. 2017. Semantics derived automatically from
language corpora contain human-like biases. Science 356:6334, 183-186.

Caliskan et al. replication with embeddings:

> African-American names (Leroy, Shaniqua) had a higher GloVe
cosine with unpleasant words (abuse, stink, ugly)

> European American names (Brad, Greg, Courtney) had a higher
cosine with pleasant words (love, peace, miracle)

Embeddings reflect and replicate all sorts of pernicious biases.




Oi

De

rections

viasing algorithms for embeddings

> Bolukbasi, Tolga, Chang, Kai-Wei, Zou, James Y.,
Saligrama, Venkatesh, and Kalai, Adam T. (2016). Man is
to computer programmer as woman is to homemaker?
debiasing word embeddings. In Advances in Neural Infor-
mation Processing Systems, pp. 4349-4357.

Use embeddings as a historical tool to study bias



Embeddings as a window onto history

Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and James Zou, (2018). Word embeddings quantify 100 years of gender
and ethnic stereotypes. Proceedings of the National Academy of Sciences, 115(16), E3635—-E3644

Use the Hamilton historical embeddings

The cosine similarity of embeddings for decade X
for occupations (like teacher) to male vs female
names

o |s correlated with the actual percentage of women
teachers in decade X



History of biased framings of women

Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and James Zou, (2018). Word embeddings quantify 100 years of gender
and ethnic stereotypes. Proceedings of the National Academy of Sciences, 115(16), E3635—-E3644

Embeddings for competence adjectives are
biased toward men

°Smart, wise, brilliant, intelligent, resourceful,
thoughtful, logical, etc.

This bias is slowly decreasing



Princeton Trilogy experiments

Study 1: Katz and Braley (1933)
Investigated whether traditional social stereotypes had a cultural basis

Ask 100 male students from Princeton University to choose five traits that
characterized different ethnic groups (for example Americans, Jews,
Japanese, Negroes) from a list of 84 word

84% of the students said that Negroes were superstitious and 79% said that
Jews were shrewd. They were positive towards their own group.

Study 2: Gilbert (1951)
Less uniformity of agreement about unfavorable traits than in 1933.

Study 3: Karlins et al. (1969)

Many students objected to the task but this time there was greater
agreement on the stereotypes assigned to the different groups compared
with the 1951 study. Interpreted as a re-emergence of social stereotyping
but in the direction more tfavorable stereotypical images.




Embeddings reflect ethnic
stereotypes over time

Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and James Zou, (2018). Word embeddings quantify 100 years of gender
and ethnic stereotypes. Proceedings of the National Academy of Sciences, 115(16), E3635—-E3644

* Princeton trilogy experiments

* Attitudes toward ethnic groups (1933,
1951, 1969) scores for adjectives

* industrious, superstitious, nationalistic, etc

* Cosine of Chinese name embeddings with
those adjective embeddings correlates with
human ratings.



Change in linguistic framing
1910-1990

Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and James Zou, (2018). Word embeddings quantify 100 years of gender
and ethnic stereotypes. Proceedings of the National Academy of Sciences, 115(16), E3635—-E3644

Change in association of Chinese names with adjectives
framed as "othering" (barbaric, monstrous, bizarre)

0.09 =@— Avg. Asian Bias

Avg. Asian Bias

0.02

0.01
1910 1920 1930 1940 1950 1960 1970 1980 1990

Year




Changes in framing:
adjectives associated with Chinese

Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and James Zou, (2018). Word embeddings quantify 100 years of gender
and ethnic stereotypes. Proceedings of the National Academy of Sciences, 115(16), E3635—-E3644

1910 1950 1990
Irresponsible Disorganized Inhibited
Envious Outrageous Passive
Barbaric Pompous Dissolute
Aggressive Unstable Haughty
Transparent Effeminate Complacent
Monstrous Unprincipled Forceful
Hateful Venomous Fixed
Cruel Disobedient Active
Greedy Predatory Sensitive

Bizarre Boisterous Hearty




Conclusion

Embeddings = vector models of meaning
> More fine-grained than just a string or index

o Especially good at modeling similarity/analogy
> Just download them and use cosines!!

> Can use sparse models (tf-idf) or dense models (word2vec,
GLoVE)

> Useful in practice but know they encode cultural
stereotypes




