Neural Network

Neural Network Meth

ods
for Natural Language Processing
1 Y R ko

}'

READ CHAPTERS 5 AND 7 IN
JURAFSKY AND MARTIN

READ CHAPTER 4 FROM
YOAV GOLDBER’S BOOK
NEURAL NETWORKS
METHODS FOR NLP

(IT"S FREE TO DOWNLOAD
FROM PENN’S CAMPUS!)

SYNTHESIS LECTURES ON
Hunan 1L.aANGUAGE TECHNOLOGIES

Graeme Hirst, Series Editor

Reminders

QUIZ IS DUE TONIGHT BY HOMEWORK 5 IS DUE
11:59PM WEDNESDAY

Recap: Logistic Regression

Logistic regression solves this task by learning, from a
training set, a vector of weights and a bias term.

n
Z wix; | +b
i=1

N
]

We can also write this as a dot product:

z = w-x+b

Recap: Sigmoid function

Recap: Probabilities

Py=1) = o(w-x+b)
1
1_|_e—(w-x-|-b)

Py=0) = 1—oc(w-x+b)

Recap: Loss functions

We need to determine for some observation x how close the

classifier output (y = o (w - x + b)) is to the correct output y,
whichis O or 1.

L(y,y) = how much y differs from the true y

Recap: Loss functions

For one observation x, let’s maximize the probability of the
correct label p(y|x).

p(ylx) = YA -9
Ify =1, then p(y|x) = 7.
Ify=0,thenp(y|x) =1—7.

Recap: Cross-entropy loss

The result is cross-entropy loss:

Lee(,y) = —logp(ylx) = —[ylogy + (1 — y)log(1 —)]

Finally, plug in the definition for y=0 (w - x) + b
Lee(@,y) = —[ylogo(wx+b) + (1 —y)log(1l — o(w-x+b))]

Recap: Cross-entropy loss

Why does minimizing this negative log probability do what
we want?

A perfect classifier would assign probability 1 to the correct
outcome (y=1 or y=0) and probability O to the incorrect
outcome.

That means the higher y (the closer it is to 1), the better the
classifier; the lower ¥ is (the closer it is to 0), the worse the
classifier.

The negative log of this probability is a convenient loss
metric since it goes from O (negative log of 1, no loss) to
infinity (negative log of O, infinite loss).

Loss on all training examples

m
log p(training labels) = logl_[p(y(i)pc(i))
i=1

m
=) 1ogp(y©|x®)

=1

m
= - > LGPy ®)

=1

Finding good parameters

We use gradient descent to find good settings for our weights and bias
by minimizing the loss function.

A | — N
0 = argmin—ZLCE(y(’),x(’);G)
o Mg

Gradient descent is a method that finds a minimum of a function by
figuring out in which direction (in the space of the parameters) the
function’s slope is rising the most steeply, and moving in the opposite
direction.

Finding good parameters

We use gradient descent to find good settings for our weights and bias
by minimizing the loss function.

R 1< L
0 = argmin—z Leg(yW, x®): 9)
6 M-

Gradient descent is a method that finds a minimum of a function by
figuring out in which direction (in the space of the parameters) the
function’s slope is rising the most steeply, and moving in the opposite
direction.

Gradient descent

Global v. Local Minimums

For logistic regression, this loss function is conveniently
convex.

A convex function has just one minimum, so there are no
local minima to get stuck in.

So gradient descent starting from any point is guaranteed to
find the minimum.

iteratively find minimum

clop?

Loss L(\‘

slope of loss at wl
1S negative

one step
of gradient
descent

How much should we update
the parameter by?

The magnitude of the amount to move in gradient descent is the value
of the slope weighted by a learning rate n.

A higher/faster learning rate means that we should move w more on

each step. I A+ /k*@)«,\u Q\BQQ‘
d .
@;D =w [xw) |
oA Tl o
\ YIS YAl grtrt
g et R

Many dimensions
Cost(w,b)

Updating each dimension w,

o _%L(f(X;G),y)
s —L(f(x;0),
@L(%,y» _ [FRtEO)

N\

[s J ,
ool Lo lw@).y)
Pm(méﬂd+ X ﬁl\Mn pMVl/\QAZ?/S S

| | . [earn;
The final equation for updating 6 ba n the
gradient is
041 = 6 VL(f(x;0),y)

The Gradient /
V4

To update 6, we need a definition for the gradient VL(f(x; 8), y).

For logistic regression the cross-entropy loss function is:

Lep(w,b) =) —[ylogo(w-x+b)+ (1 —y)log(l —o(w-x+b))]|
The derivative of this function for one observation vector x for a single
weight w; is rufa
dLce (w,b) s W,
ZU2 = [olwexth)—yhy = # valie
! gJ o sl @fe/rcﬁm fagdure j

The gradient is a very intuitive value: the difference between the true y
and our estimate for x, multiplied by the corresponding input value x; .

Average Loss

15 NOIWNO
Cost(w,b)=a2Lc5(}’ Y)
i=1

m
1 . . . :
B _EE yOloga(w-x® +b) + (1 - yD)log(1 — o(w - x¥ + b))
i=1

This is what we want to minimize!!

The Gradient

The loss for a batch of data or an entire dataset is just the average loss

over the m examples
m

1
Cost(w,b) = —EZ)}(‘) loga(w-x® +b)+ (1 —yD)log(1 — o(w-xD + b))

=1

The gradient for multiple data points is the sum of the individual
gradients:

m
OCost(w,b) _ z[(,(w x4 p) =y OO

i=1

Stochastic gradient descent
algorithm

function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns 6
where: L 1s the loss function
f is a function parameterized by 6
X is the set of training inputs x<1>, x(z), - x(")
y is the set of training outputs (labels) y<1), y(z), s y(”>

00

repeat T times
For each tralnlng tuple (x(), y®) (in random order)
Compute $() = f (; 9) # What is our estimated output y?
Compute the loss L(y() y(l)) # How far off is)?(i)) from the true output y()?
g VoL(f(x1;0),y) # How should we move 6 to maximize loss ?
0—06 —ng # go the other way instead

return 6

l

Multinomial logistic regression

Instead of binary classification, we often want more than two classes.
For sentiment classification we might extend the class labels to be
positive, negative, and neutral.

We want to know the probability of y for each class ¢ € C, p(y = c| x).

To get a proper probability, we will use a generalization of the sigmoid
function called the softmax function.

softmax(z;)) = z— - 1<i<k

Softmax

The softmax function takes in an input vector z = [z,,2,,...,z,] and outputs
a vector of values normalized into probabilities.

e?1 e?2 eZk

k z: 'Ok z-’.”’ k Z:
iz1 €% Xi_q €% i=1€°"

softmax(z) = [

For example, for this input:
z=1[0.6,1.1,-1.5,1.2,3.2, -1.1]
Softmax will output:

[0.056, 0.090, 0.007, 0.099, 0.74, 0.010]

Neural Networks: A brain-
inspired metaphor

Dendrites Terminal branches of axon
(receive messages (form junctions with other cells)

from other cells)

N

/
Axon
‘ (passes messages away
4 from the cell body to

other neurons,

muscles, or glands

R /’r

~ . »
\ s "
. _ J g
L5
—

7/

N

R
e

3 el

\

' .

.
o

-_—

7

Myelin sheath
(covers the axon

Cell body Neural impulse (action potential) of some neurons
(the cell’s life- (electrical signal traveling and helps speed
support center) down the axon) neural impulses)

A single neuron

Output ‘

Neuron

/N

Neural networks

RN
Vi
‘ei“&i%“‘,

NSRS o“"{i

LT '(
&

\PORESAS
b

ARERIN

'/‘(\Vr’\¥§

Output layer

Hidden layer

Hidden layer

Input layer

Mathematical Notation

The simplest neural network is called a perceptron. It is simply a linear
model:

NNPerceptron (x) =xW +b

X € Rdin, W c Rdinxdout, b c Rdout

where W is the weight matrix and b is a bias term.

Mathematical Notation

To go beyond linear function, we introduce a non-linear hidden layer.
The result is called a Multi-Layer Perceptron with one hidden layer.

NNmipi(x) = g(x W11 + bYW ?2 + b2

x € Rén Wl e RI>di pl c Rd1 W2 cRAU*2 p2 c RD

Here W?! and b! are a matrix and a bias for the first linear
transformation of the input x,

g is a nonlinear function (also an activation function),

W2 and b2 are the matrix and bias term for a second linear transform.

Mathematical Notation

We can add additional linear transformations and nonlinearities,
resulting with a MLP with two hidden layers:

NNMrp2(x) = (g%(g' (xWl +bH)yWw?2 + p2))W 3.

Output layer

Same equation, but written with
intermediary variables:

KIS

/}‘1?‘\'
s
NS ?\"}‘;""f‘;}'/
4

Hidden layer NNMLPZ (x) =y

' =g'(xW1+ bt
h2 =g2(h1W2 i b2)
y =h*wW3.

%
DR ‘b{“‘ l ‘
.

R
A

Hidden layer

X1 X3 X3 X4

Input layer

Dimensions of the layers

A neural network can be described the the dimensions of its layers and
of its input.

d;, is the number of dimensions of the input vector
d,,: is the number of dimensions of the output vector

A fully connected layer I(x) = xXW + b with input size d;,and and output
size d,,; will have the following dimensions:

the dimensions of x are 1 x d,
the dimensions of W are d;, x d,,;

the dimensions of bare 1 xd,,,

Dimensions of the output
ayer
d,,: = 1 means the neural networks output is a scalar. Such networks

can be used for
o Regression or scoring

° Binary classification

d,,: = k> 1 can be used for k-class classification.

o Associate each dimension with a class, and look for the dimension with
maximal value.

° If the output vector entries are positive and sum to one, the output can be
interpreted as a distribution over class assignments.

The softmax forces the values in an output layer to be positive and sum to 1,
making them interpretable as a probability distribution.

y = softmax(x W + b)
e(xW+b)[,-]

Vil = Zj e(XW+b)[j] '

Representation Power

A Multi-Layer Perceptron with one
hidden layer is a “universal
approximator”.

It can approximate a family of
functions that includes all
continuous functions on a closed
and bounded subset of R"

It can approximate any function
mapping from any finite dimensional
discrete space to another.

Output layer

Hidden layer

Hidden layer

Input layer

So why use multiple layers?

Common Nonlinearities

sigmoid(x) tanh(x) hardtanh(x) ReLU(x)
1.0 1.0 1.0 1.0
0.5 _/ 0.5 0.5 0.5 /
0.0 0.0 0.0 0.0
-0.5 -0.5 -0.5 -0.5
-1.0 -1.0 -1.0 -1.0
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
o o or or
O0x O0x Ox O0x
1.0 1.0 1.0 1.0
0.5 0.5 £ m\ 0.5 0.5 I
——/_\
0.0 0.0 0.0 0.0
-0.5 -0.5 -0.5 -0.5

.0 .0 .0 .
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

Tralning concerns

Loss functions. Much like training a logistic regression classifier, we
define a loss function

L(y,y) = how much y differs from the true y
Loss functions like cross-entropy loss are relevant for neural nets too.

Regularization. To avoid overfitting, we often add a regularization term
alongside our loss function when we search for the best parameters.

A

® = argmin £(0) + AR(O)
®

= argé)nin % Y L(f(xi:©).y,) + AR(O)

i=1

Dropout attempts to avoid overfitting by randomly dropping (setting to
0) half of the neurons in the network in each training example in SGD.

Language Models

Estimate the probability of a sentence consisting of word sequence w,.,

n
P(wig) ~ l_[P(w; | wi—g:i—1)

=1

We need to estimate the probability of P(w.,,|w,..;) from a large corpus.

#(Wwi—k:i+1)
#(W;i—k:;)

pAMLE(wi-l-l = m|w;_k:j) =

#(Wi—k:i+1) + @
#(Wi—k:i) + a|V|

ﬁadd—a(wi+l = m|w;_k:;) =

#(Wi—k:i+1)
IR (Wi g

D (Wit1 = m|wj_g;) = A + (1 = Ay, ;) D (Wig1 = M|Wi—(k—1):i)-

Limitations of LMs

The “curse of dimensionality”. If we want to model the full joint
distribution of 10 consecutive words with a vocabulary V of size
100,000, there are potentially 100,0001° =10°° -free parameters.

In n-gram LMs, we simplify this to predict the next word given a limited
context. We construct conditional probabilities table for n given n-1.

Only those combinations of successive words that actually occur in our
training corpus are recorded in the table.

Having observed black car and blue car does not influence our
estimates of red car.

A lot of what we do is language modelling (smoothing, backoff, etc) is
trying to deal with the unobserved entries.

Neural LMs (Bengio et al 2003)

1. Associate each word in the vocabulary with a vector-representation,
thereby creating a notion of similarity between words.

2. Express the joint probability function of a word sequence in terms of
the word vectors for the words in that sequence.

3. Simultaneously learn the word vectors and the parameters of the
function.

The word vectors are low-dimensional (d=30 to d=100) dense vectors,
like we’ve seen before.

The probability function is expressed the product of conditional

probabilities of the next word given the previous word, using a multi-
layer neural network.

Neural LMs

The input to the neural network is a k-gram of words wy.,.
The output is a probability distribution over the next word.

The k context words are treated as a word window. Each word is
associated with an embedding vector:

v(w) € Réw

The input vector x just concatenates v(w) for each of the k words:

x = [v(wy);v(wa);...;v(wg)]

Neural LMs

The input x is fed into a neural network with 1 or more hidden layers:

9y = P(wilwix) = LM(w;.x) = softmax(hW? + b?)
h=gxw!+pl)
x = [v(wy); v(wa);...; v(wk)]

v(w) = Ey

w; €V E e RIVIXdw w1l c gkdwxdia pl c Rdnida 2 ¢ RaXIVl p2 c RIVI

— * L - Pde d‘(’/ﬂ)
Vo ovdwaw\—
{ we f\J
- R e
; 0009 0Q ®o
; E 3 OTOo0O o v
- ‘ H =

waerd 3

I T/\?\)\que&uf u)/N\fg SO dwensonr

wWgC d L\ |
/Q \ﬁ‘j\“\\)@w\‘\j Lonehon Lown Votab tlemm onfe

\‘/\@\A\' : 2 AN |ow N glovial dewst Vecdpe S

\\ § < ‘
\ \'\i;ga?,;(The ‘(JU\/M\j ot | put word)
repees st

Tralning
The training examples are simply word kgrams from the corpus

The identities of the first k+1 words are used as features, and the last
word is used as the target label for the classification.

Conceptually, the model is trained using cross-entropy loss.

Working with cross entropy loss works very well, but requires the use of
a costly softmax operation which can be prohibitive for very large
vocabularies, we we often use alternative loss functions or
approximations.

Advantages of NN LMs

Better results. They achieve better preplexity scores than SOTA n-gram
LMs.

Larger N. NN LMs can scale to much larger orders of n. This is
achievable because parameters are associated only with individual

words, and not with n-grams.

They generalize across contexts. For example, by observing that the
words blue, green, red, black, etc. appear in similar contexts, the model
will be able to assign a reasonable score to the green car even though it
never observed in training, because it did observe blue car and red car.

A by-product of training are word embeddings!

Language Modeling

Goal: Learn a function that returns the joint probability
Primary difficulty:

1. There are too many parameters to accurately estimate.
This is sometimes called the “curse of dimensionality”

2. In n-gram-based models we fail to generalize to related
words / word sequences that we have observed.

Curse of dimensionality /
sparse statistics

Suppose we want a joint distribution over 10 words.
Suppose we have a vocabulary of size 100,000.

100,000%° =10°% parameters

This is too high to estimate from data.

Chain rule

In LMs we user chain rule to get the conditional probability
of the next word in the sequence given all of the previous
words:

_ T
P(wiwows.. W) = |lg=1 P(We| Wy We_q)

What assumption do we make in n-gram LMs to simplify
this?

The probability of the next word only depends on the
previous n-1 words.

A small n makes it easier for us to get an estimate of the
probability from data.

Probability tables

We construct tables to look up the probability of seeing a
word given a history.

dimensionality
azure
knowledge

oak

The tables only store observed sequences.

What happens when we have a new (unseen) combination
of n words?

Unseen sequences

What happens when we have a new (unseen) combination
of n words?

1. Back-off
2. Smoothing / interpolation

We are basically just stitching together short sequences of
observed words.

Alternate idea

Let’s try generalizing.

Intuition: Take a sentence like

The.is-in the{bedroom]

And use it when we assign probabilities to similar sentences

like
The-is-around the

A Neural Probabilistic LM

Bengio et al NIPS 2003

1. Use a vector space model where the words are vectors
with real values R™. m=30, 60, 100. This gives a way to
compute word similarity.

2. Define a function that returns a joint probability of words
in a sequence based on a sequence of these vectors.

3. Simultaneously learn the word representations and the
probability function from data.

Seeing one of the cat/dog sentences allows them to increase
the probability for that sentence and its combinatorial # of
“neighbor” sentences in vector space.

A Neural Probabilistic LM

Given:
A training set w; ... w, where w, €V

Learn:
flwy ... wy) = P(w,|wy ... wy)

Subject to giving a high probability to an unseen text/dev set
(e.g. minimizing the perplexity)

Constraint:

Create a proper probability distribution (e.g. sums to 1) so that
we can take the product of conditional probabilities to get the
joint probability of a sentence

A Neural Probabilistic LM

1. Create a mapping function C from any word in V onto
RM, Store this in a V-by-M matrix. Initialize it with
singular value decomposition (SVD).

2. The neural architecture: a function g maps sequence of
word vectors onto a probability distribution over the
vocabulary V

8(C(wyy) ... Clwiy)) = P(Wy Wiy oo Wy g)

— * L - Pde d‘(’/ﬂ)
Vo ovdwaw\—
{ we f\J
- R e
; 0009 0Q ®o
; E 3 OTOo0O o v
- ‘ H =

waerd 3

I T/\?\)\que&uf u)/N\fg SO dwensonr

wWgC d L\ |
/Q \ﬁ‘j\“\\)@w\‘\j Lonehon Lown Votab tlemm onfe

\‘/\@\A\' : 2 AN |ow N glovial dewst Vecdpe S

\\ § < ‘
\ \'\i;ga?,;(The ‘(JU\/M\j ot | put word)
repees st

Word embeddings

When the ~50 dimensional vectors that result from training
a neural LM are projected down to 2-dimensions, we see a
lot of words that are intuitively similar to each other are

cable
close together. . media
ailly e Eefevisigpaaaomic
. entgxladvneetng
groving 1leadng
deve].oping news ddd
1
talk
13
suppoxting e s
= i e
containing ~ proddt iy opening
ng cr@ﬁmg . Scoxi -ng
giving nyg
pexfoxming].e;gﬁ : aching
3 host
dgdee; " Brodacast
ng passing Xoadacas
o nming)
t dxiving yun hit plaaming

Current state of the art neural
LMs

ELMo
GPT
BERT
GPT-2

https://allennlp.org/elmo
https://blog.openai.com/language-unsupervised/
https://arxiv.org/pdf/1810.04805.pdf
https://blog.openai.com/better-language-models/

