Reminders

HW7 HAS BEEN RELEASED. IT IS DUE BEFORE SPRING BREAK

HW6 IS DUE TONIGHT BY 11:59PM

Grammars and Parsing

JURAFSKY AND MARTIN CHAPTERS 12, 13, AND 14

Based on slides from Sameer Singh, Dan Jurafsky, Noah Smith, Slav Petrov, and everyone else they copied from.

Prescriptive v. Descriptive Grammars

Concerned with establishing norms or rules for good writing.

For example:

- 1. It's important to never split infinitives
- 2. Prepositions are bad to end sentences with
- 3. Always have ten items or less

Describe how native speakers actually use a language.

Language is shaped by the speakers of a language and not dictated by central body.

Therefore rules should describe how language is sued.

Limitations of Sequence Tags

John Smith shot Bill in his pajamas.

John Smith shot Bill in his pajamas.

What happened? Who shot who? Who was wearing the pajamas?

How do words group together in English?

A **noun phrase** is a sequence of words surrounding at least one noun.

What evidence do we have that these words group together?

Noun Phrases

Harry the Horse the Broadway coppers they a high-class spot such as Mindy's the reason he comes into the Hot Box three parties from Brooklyn

Constituents

Constituent behave as a unit that can be rearranged: John talked [to the children] [about drugs]. John talked [about drugs] [to the children]. John talked drugs to the children about Or substituted/expanded:

John talked [to the children taking the drugs] [about alcohol].

Harry the Horse a high-class spot such as Mindy's the Broadway coppers the reason he comes into the Hot Box they	Х	arrive(s) attract(s) love(s) sit(s)
three parties from Brooklyn		

"Noun phrases appear before verbs in English."

Constituents and Grammars

Grammar

Tells you how the constituents can be arranged Implicit knowledge for us (we often can't tell *why* something is wrong) Generate all, and only, the possible sentences of the language Different from meaning:

Colorless green ideas sleep furiously.

The words are in the right order, And that ideas are green and colorless, And that ideas sleep, And that sleeping is done furiously, As opposed to: "sleep green furiously ideas colorless"

Uses of Parsing

[send [the text message from James] [to Sharon]]

[translate [the message] [from Hindi] [to English]]

- 1. Grammar checkers
- 2. Dialog systems
- 3. High precision question answering
- 4. Named entity recognition
- 5. Sentence compression
- 6. Extracting opinions about products
- 7. Improved interaction in computer games
- 8. Helping linguists find data
- 9. Machine translation
- 10. Relation extraction systems

Basic Grammar: Regular Expr.

- You can capture individual words:
 - (men|dogs|cats)
- Simple sentences:
 - (men|dogs|cats)(eat|love|consumed)(.|food|lunch)
- Infinite length? Yes!
 - men (who like (cats|dogs))* cry.

Context Free Grammars

Context Free Grammars

$$A \rightarrow ABA$$

$$A \rightarrow a$$

$$B \rightarrow b$$

$$G \equiv \langle \{\alpha, b\}, \{A, B\}, R, A \rangle$$

$$A \rightarrow BBABB$$

Context-Free Grammars

Grammar, G

Terminal Symbols

Non-terminal Symbols

Rules

Grammar applies rules recursively..

If we can construct the input sentence, it is in the grammar, otherwise not.

Context-Free Grammars

If we can construct the input sentence, it is in the grammar, otherwise not.

Example CFG

Gramm	nar	Rules	Examples
S	\rightarrow	NP VP	I + want a morning flight
NP	\rightarrow	Pronoun	I
		Proper-Noun	Los Angeles
		Det Nominal	a + flight
Nominal	\rightarrow	Nominal Noun	morning + flight
		Noun	flights
VP	\rightarrow	Verb	do
		Verb NP	want + a flight
	İ	Verb NP PP	leave + Boston + in the morning
	İ	Verb PP	leaving + on Thursday
PP	\rightarrow	Preposition NP	from + Los Angeles

"Lexicon"

Example CFG A->WI [W2 A->W1 A->W2

 $Noun \rightarrow flights | breeze | trip | morning$ $Verb \rightarrow is | prefer | like | need | want | fly$ $Adjective \rightarrow cheapest | non-stop | first | latest$ | other | direct $Pronoun \rightarrow me | I | you | it$ $Proper-Noun \rightarrow Alaska | Baltimore | Los Angeles$ | Chicago | United | American $Determiner \rightarrow the | a | an | this | these | that$ $Preposition \rightarrow from | to | on | near$ $Conjunction \rightarrow and | or | but$

Gramma	Rules	Examples
$S \rightarrow$	NP VP	I + want a morning flight
$\begin{array}{ccc} NP & \rightarrow & \\ & \\ Nominal & \rightarrow & \end{array}$	Pronoun Proper-Noun Det Nominal Nominal Noun Noun	I Los Angeles a + flight morning + flight flights
$VP \rightarrow $	Verb Verb NP Verb NP PP Verb PP	do want + a flight leave + Boston + in the morning leaving + on Thursday
$PP \rightarrow$	Preposition NP	from + Los Angeles

Example Parse Tree

I prefer a morning flight.

-		
Grammaı	Rules	Examples
$S \rightarrow$	NP VP	I + want a morning flight
		0 0
$NP \rightarrow$	Pronoun	I
· · · · · · · · · · · · · · · · · · ·	Proper Noun	Los Angeles
	Proper-Noun	Los Aligeres
	Det Nominal	a + flight
Nominal \rightarrow	Nominal Noun	morning + flight
1	Noun	flights
I	110000	mgnus
$VP \rightarrow$	Varh	do
	Verb NP	want + a flight
	Verb NP PP	leave + Boston + in the morning
i i	Verb PP	leaving + on Thursday
I		
$PP \rightarrow$	Preposition NP	from + Los Angeles
$II \rightarrow$	reposition M	nom + Los Angeles

Example Parse Tree

Example Parse Tree: Brackets

I prefer a morning flight.

Example Parse Tree: Brackets

I prefer a morning flight.

Types of Sentences

A Computer Model of a Grammar for English Questions

Chris Callison-Burch

June 2000

Contents

1	Inti	roduction	3
	1.1	"Grammar Engineering" Explained	3
	1.2	The LKB	4
	1.3	Downloading the Software	4
2	Sur	nmary of Ginzburg and Sag (2000)	6
	2.1	Overview of HPSG	6
	2.2	Semantic Argument Selection	8
	2.3	The Content of Questions	10
	2.4	Polar Interrogative Constructions	12
	2.5	Wh-Questions	14
		2.5.1 Unbounded Dependencies	14
		2.5.2 Nonsubject Wh-Interrogatives	17
		2.5.3 Subject Wh-Interrogatives	19
	2.6	Multiple Wh-Questions	21
3	The	eory vs. Implementation	28
	3.1	Determinacy in Grammar Rule Length	28
	3.2	Difference Lists	29
	3.3	Pumping Rules and Intermediate Types	31
	3.4	Sets Treated as Lists	34
4	Kev	v Examples	35
	4.1	Simple Declaratives	35
		4.1.1 Semantic Subcategorization	38
	4.2	Focused and Unfocused "Do"	40
	4.3	Non-subject Wh-Interrogatives	42
	1.0	4.3.1 Distinguished From Topicalization	44
		4.3.2 As Embedded Questions	44
	4.4	Subject Wh-Interrogatives	45
	4.5	Sensitivity to the Presence of <i>Wh</i> -Words	46
	1.0	4.5.1 Pied Piping	46
		4.5.2 "The Hell" Examples	47
	4.6	Multiple Wh-Questions	49

Clauses versus phrases

A clause expresses a "complete thought". One example is a complete sentence, which has a main **verb** and all of its **arguments** filled.

I **prefer** a morning flight

Verb: Prefer

Arguments:

- 1. The subject (the holder of the preference)
- 2. The direct object (the thing preferred)

The Noun Phrase

Three of the most frequent types of noun phases in English are:

- 1. Pronouns
- 2. Proper nouns
- 3. The construction $NP \rightarrow Det Nominal$

For the third type, often, we have simple determiner like:

a flight	the flights	this flight
those flights	any flights	some flight

Remember that mass nouns don't require a determiner.

Complex determiners

Sometimes instead of single words like **a**, the, those, this, some, any determiners can be complex phrases themselves.

In English this can have with the possessive marker 's.

CCB's laptop

CCB's laptop's broken keyboard

CCB's laptop's keyboard's butterfly keys

This is our first example of recursive rules.

 $NP \rightarrow Det Nominal$

 $\textit{Det} \rightarrow \textit{NP} \textbf{'s}$

Nominals

$NP \rightarrow Det Nominal$

In English, a *nominal* follows a determiner. This can be as simple as a single noun

 $Nominal \rightarrow Noun$

But can also be more complex with pre- or post-head noun modifiers.

Before the noun	After the head noun
Cardinal and ordinal numbers	prepositional phrases
Quantifiers (many, few, several)	non-finite clauses
Adjectives (first-class, earliest)	relative clauses

Recursive Noun Phrases

this is the house

this is the house that Jack built

this is the cat that lives in the house that Jack built

this is the dog that chased the cat that lives in the house that Jack built

this is the flea that bit the dog that chased the cat that lives in the house the Jack built

this is the virus that infected the flea that bit the dog that chased the cat that lives in the house that Jack built

Recursive Noun Phrases

this is the house that Jack built

this is the cat that lives in the house that Jack built

this is the dog that chased the cat that lives in the house that Jack built

this is the flea that bit the dog that chased the cat that lives in the house the Jack built

this is the virus that infected the flea that bit the dog that chased the cat that lives in the house that Jack built

Recursive Noun Phrases

morning

Verb Phrases

Simple Verb Phrases

 $VP \rightarrow Verb$ $VP \rightarrow Verb NP$ $VP \rightarrow Verb NP PP$ $VP \rightarrow Verb PP$ disappear prefer a morning flight leave Boston in the morning leave in the morning

But all verbs are not the same! (this grammar over-generates)

Solution: subcategorize!

Sneezed:	Skyler sneezed.
Read:	Gaurav read the book
Find:	Please find a flight to NY.
Give:	Give me a cheaper fare.
Help:	Can you help me with a flight?
Prefer:	I prefer to leave earlier.
Told:	I was told United has a flight.

Subcategorization frames

Frame	Verb	Example
-	eat, sleep	l ate
NP	prefer, find, leave	Find [NP the one ring]
NP NP	show, give	Give [NP Frodo] [NP the ring]
$PP_{from}PP_{to}$	fly, travel	Fly [PP from Philadelphia] [PP to Honolulu]
NP PP _{with}	help	Help [NP me] [PP with my homework]
VP _{infinitival}	prefer, want, need	I would prefer [VP to finish] early
VP _{bare}	can, would, might	I can [VP finish] my homework
S	mean	Does this mean [S we are done]?

Expanding our rule set

We could create subtypes of the class Verb capture the association between verbs and their complements:

Verb-with-NP-complement \rightarrow *find* | *leave* | *repeat* | ...

Verb-with-S-complement \rightarrow *think*| *believe*| *say*| ...

Verb-with-Inf-VP-complement \rightarrow *want*| *try*| *need*| ...

Then modify each VP rule to give the right argument types:

 $VP \rightarrow Verb$ -with-no-complement $VP \rightarrow Verb$ -with-NP-comp NP $VP \rightarrow Verb$ -with-S-comp S

Predicate-argument relations

Another way of talking about the relation between the verb and these other constituents is to think of the verb as a logical predicate and the constituents as logical arguments of the predicate.

FIND(BILBO, THE RING)

WANTS(SAURON, THE RING)

THROW(FRODO, THE RING, MOUNT DOOM)

Coordination

Conjunctions like **and**, **or**, and **but** can form larger constructions of the same type. For example, a coordinate noun phrase can consist of two other noun phrases separated by a conjunction:

Please repeat [NP [NP the flights] and [NP the costs]]

I need to know [NP [NP the aircraft] and [NP the flight number]]

Here's a rule that allows these structures:

 $NP \rightarrow NP$ and NP

This also works with other types, like VP, S and Nominal. So some people create "Metarules" like

 $X \rightarrow X and X$

Source of Grammar?

 $VP \rightarrow V NP$

Manual

Noam Chomsky

Write symbolic grammar	(CFG or often richer) and lexicon
$S \rightarrow NP VP$	$NN \rightarrow interest$
$NP o (DT) \ NN$	$NNS \rightarrow rates$
$NP \to NN \ NNS$	$NNS \rightarrow raises$
$NP \to NNP$	$VBP \rightarrow interest$

Used grammar/proof systems to prove parses from words

 $VBZ \rightarrow rates$

Fed raises interest rates 0.5% in effort to control inflation

Minimal grammar: 36 parses
Simple 10 rule grammar: 592 parses
Real-size broad-coverage grammar: millions of parses

Source of Grammar?

The Penn Treebank

From data!

Building a treebank seems a lot slower and less useful than building a grammar

But a treebank gives us many things

- Reusability of the labor
 - Many parsers, POS taggers, etc.
 - Valuable resource for linguistics
- Broad coverage
- Frequencies and distributional information
- A way to evaluate systems
((S (NP-SBJ (DT That) (JJ cold) (, ,) (JJ empty) (NN sky)) (VP (VBD was) (ADJP-PRD (JJ full) (PP (IN of) (NP (NN fire) (CC and) (NN light))))) (. .)))


```
( (S
    (NP-SBJ (DT The) (NN move))
    (VP (VBD followed)
      (NP
        (NP (DT a) (NN round))
        (PP (IN of)
          (NP
            (NP (JJ similar) (NNS increases))
            (PP (IN by)
              (NP (JJ other) (NNS lenders)))
            (PP (IN against)
              (NP (NNP Arizona) (JJ real) (NN estate) (NNS loans))))))
      (, ,)
      (S-ADV
        (NP-SBJ (-NONE- *))
        (VP (VBG reflecting)
          (NP
            (NP (DT a) (VBG continuing) (NN decline))
            (PP-LOC (IN in)
              (NP (DT that) (NN market)))))))
    (...)))
```

Some of the rules, with counts

100 PRN \rightarrow : NP :

100 VP \rightarrow VBD PP-PRD

33803 S \rightarrow NP-SBJ VP 22513 NP-SBJ \rightarrow -NONE-21877 NP \rightarrow NP PP 20740 NP \rightarrow DT NN 14153 S \rightarrow NP-SBJ VP . 12922 VP \rightarrow TO VP 11881 PP-LOC \rightarrow IN NP 11467 NP-SBJ \rightarrow PRP 11378 NP \rightarrow -NONE-11291 NP \rightarrow NN 989 VP \rightarrow VBG S 985 NP-SBJ \rightarrow NN 983 PP-MNR \rightarrow IN NP 983 NP-SBJ \rightarrow DT 969 VP \rightarrow VBN VP

 $40717 \text{ PP} \rightarrow \text{IN NP}$

100 NP \rightarrow DT JJS 100 NP-CLR \rightarrow NN 99 NP-SBJ-1 \rightarrow DT NNP $98 \text{ VP} \rightarrow \text{VBN NP PP-DIR}$ $98 \text{ VP} \rightarrow \text{VBD PP-TMP}$ 98 PP-TMP \rightarrow VBG NP $97 \text{ VP} \rightarrow \text{VBD} \text{ ADVP-TMP} \text{ VP}$ 10 WHNP-1 \rightarrow WRB II 10 VP \rightarrow VP CC VP PP-TMP 10 VP \rightarrow VP CC VP ADVP-MNR 10 VP \rightarrow VBZ S , SBAR-ADV 10 VP \rightarrow VBZ S ADVP-TMP

4500 rules for VP!

NP rules

 $NP \rightarrow DT JJ NN$ $NP \rightarrow DT JJ NNS$ $NP \rightarrow DT JJ NN NN$ $NP \rightarrow DT JJ JJ NN$ $NP \rightarrow DT \parallel CD NNS$ $NP \rightarrow RB DT IJ NN NN$ [DT The] [JJ state-owned] [JJ industrial] $NP \rightarrow RB DT JJ JJ NNS$ [VBG holding] [NN company] [NNP $NP \rightarrow DT \downarrow \downarrow \downarrow NNP NNS$ Instituto] [NNP Nacional] [FW de] $NP \rightarrow DT NNP NNP NNP NNP JJ NN$ [NNP Industria] $NP \rightarrow DT \parallel NNP CC \parallel \parallel NN NNS$ $NP \rightarrow RB DT JJS NN NN SBAR$ $NP \rightarrow DT VBG JJ NNP NNP CC NNP$ $NP \rightarrow DT JJ NNS$, NNS CC NN NNS NN NP $\rightarrow DT JJ JJ VBG NN NNP NNP$ FW NNP NP \rightarrow NP JJ , JJ " SBAR " NNS

> [NP Shearson's] [JJ easy-to-film], [JJ black-and-white] "[SBAR Where We Stand]" [NNS commercials]

Evaluating Parses

Each parse tree is represented by a list of tuples:

Use this to estimate precision/recall!

Each parse tree is represented by a list of tuples: $\{ < t_i, s_i, e_i \}$

Use this to estimate precision/recall!

Evaluating Parses: Example

Evaluating Parses: Example

Outline

Context Free Grammars

Parsing: CKY Algorithm

Extensions: Probabilistic and Lexicalized

Dependency Parsing

CS 272: STATISTICAL NLP (WINTER 2019)

The Parsing Problem

Given sentence **x** and grammar **G**,

"Book that flight"

Left to Right?

The old man the boat.

The complex houses married and single soldiers and their families.

Garden Path Sentences

The complex houses married and single soldiers and their families.

Garden Path Sentences

Top Down Parsing

Bottom-up Parsing

Builds only consistent trees But most of them are invalid (don't go anywhere)!

Chomsky Normal Form

Context free grammar where all non-terminals to go:

- 2 non-terminals, or
- A single terminal

 $A \rightarrow B C$ $D \rightarrow W$

Converting to CNF

Original Grammar Chomsky Normal Form $S \rightarrow NP VP$ $S \rightarrow NP VP$ $S \rightarrow Aux NP VP$ $S \rightarrow X1 VP$ $X1 \rightarrow Aux NP$ $S \rightarrow VP$ $S \rightarrow book \mid include \mid prefer$ $S \rightarrow Verb NP$ $S \rightarrow X2 PP$ $S \rightarrow Verb PP$ $S \rightarrow VP PP$ $NP \rightarrow I \mid she \mid me$ $NP \rightarrow Pronoun$ $NP \rightarrow Proper-Noun$ $NP \rightarrow TWA \mid Houston$ $NP \rightarrow Det Nominal$ $NP \rightarrow Det Nominal$ Nominal \rightarrow Noun Nominal \rightarrow book | flight | meal | money Nominal \rightarrow Nominal Noun Nominal \rightarrow Nominal Noun Nominal \rightarrow Nominal PP Nominal \rightarrow Nominal PP $VP \rightarrow book \mid include \mid prefer$ $VP \rightarrow Verb$ $VP \rightarrow Verb NP$ $VP \rightarrow Verb NP$ $VP \rightarrow Verb NP PP$ $VP \rightarrow X2 PP$ $X2 \rightarrow Verb NP$ $VP \rightarrow Verb PP$ $VP \rightarrow Verb PP$ $VP \rightarrow VP PP$ $VP \rightarrow VP PP$ $PP \rightarrow Preposition NP$ $PP \rightarrow Preposition NP$

Dynamic Programming

table[i,j] = Set of all valid non-terminals for the constituent span (i,j)

 $S \rightarrow NP VP$ $S \rightarrow X1 VP$ $X1 \rightarrow Aux NP$ $S \rightarrow book \mid include \mid prefer$ $S \rightarrow Verb NP$ $S \rightarrow X2 PP$ $S \rightarrow Verb PP$ $S \rightarrow VPPP$ $NP \rightarrow I \mid she \mid me$ $NP \rightarrow TWA \mid Houston$ $NP \rightarrow Det Nominal$ Nominal \rightarrow book | flight | meal | money Nominal \rightarrow Nominal Noun Nominal \rightarrow Nominal PP $VP \rightarrow book \mid include \mid prefer$ $VP \rightarrow Verb NP$ $VP \rightarrow X2 PP$ $X2 \rightarrow Verb NP$ $VP \rightarrow Verb PP$ $VP \rightarrow VP PP$ $PP \rightarrow Preposition NP$

Book	the	flight through TWA		

 $S \rightarrow NP VP$ $S \rightarrow X1 VP$ $X1 \rightarrow Aux NP$ $S \rightarrow book \mid include \mid prefer S \rightarrow Verb NP$ - $S \rightarrow X2PP \leftarrow$ $S \rightarrow Verb PP \leftarrow$ $S \rightarrow VPPP$ $NP \rightarrow I \mid she \mid me$ $NP \rightarrow TWA \mid Houston NP \rightarrow Det Nominal$ Nominal \rightarrow book | flight | meal | money Nominal \rightarrow Nominal Noun Nominal \rightarrow Nominal PP $VP \rightarrow book \mid include \mid prefer$ $VP \rightarrow Verb NP$ $VP \rightarrow X2 PP$ $X2 \rightarrow Verb NP$ ----- $VP \rightarrow Verb PP$ $VP \rightarrow VP PP$ $PP \rightarrow Preposition NP$

function CKY-PARSE(words, grammar) returns table

```
for j \leftarrow from 1 to LENGTH(words) do

for all \{A \mid A \rightarrow words[j] \in grammar\}

table[j-1,j] \leftarrow table[j-1,j] \cup A

for i \leftarrow from j-2 downto 0 do

for k \leftarrow i+1 to j-1 do

for all \{A \mid A \rightarrow BC \in grammar and B \in table[i,k] and C \in table[k,j]\}

table[i,j] \leftarrow table[i,j] \cup A
```

function CKY-PARSE(words, grammar) returns table

for
$$j \leftarrow \text{from 1 to LENGTH}(words)$$
 do
for all $\{A \mid A \rightarrow words[j] \in grammar\}$
 $table[j-1, j] \leftarrow table[j-1, j] \cup A$
for $i \leftarrow \text{from } j - 2$ downto 0 do
for $k \leftarrow i + 1$ to $j - 1$ do
for all $\{A \mid A \rightarrow BC \in grammar$ and $B \in table[i,k]$ and $C \in table[k, j]\}$
 $k = 1$
 í

CKY Algorithm: Complexity

N: Number of non-terminals

R: Number of rules

n: Number of tokens in the sentence

CKY Algorithm: Complexity

- **N**: Number of non-terminals
- R: Number of rules
 - n: Number of tokens in the sentence

Outline

Parsing: CKY Algorithm

Extensions: Probabilistic and Lexicalized

Dependency Parsing

CS 272: STATISTICAL NLP (WINTER 2019)

Ambiguity: Which parse?

I shot an elephant in my pajamas.

Finding the Best Parse Tree

Cats scratch people with cats with claws.

Finding the Best Parse Tree

Probabilistic CFGs

Same as a regular context-free grammar:

- Terminal, non-terminals, and rules
- Additionally, attach a probability to each rule!

Rule: $A \rightarrow B C$

Probability: $P(A \rightarrow B C \mid A)$

Compute the probability of a parse tree:

Probabilistic CFGs

Same as a regular context-free grammar:

- Terminal, non-terminals, and rules
- Additionally, attach a probability to each rule!

Rule: $A \rightarrow B C$ Probability: $P(A \rightarrow B C \mid A)$

Compute the probability of a parse tree:
$$T P(A \rightarrow B C | A)$$

 $A \rightarrow B C \in T$

Example of a PCFG

Example of a PCFG

Estimating the probabilities

Estimating the probabilities

$$P(d \rightarrow \beta | d) = \frac{\# d \rightarrow \beta}{\# d}$$

The Parsing Problem

Given sentence **x** and grammar **G**,

Recognition

Is sentence **x** in the grammar? If so, prove it. "Proof" is a deduction, valid parse tree.

Parsing

Show one or more derivations for **x** in **G**.

 $\operatorname*{argmax}_{\boldsymbol{t} \in \mathcal{T}_{\boldsymbol{x}}} p(\boldsymbol{t} \mid \boldsymbol{x})$

Even with small grammars, grows exponentially!
Probabilistic CKY Algorithm

T[i,j,A] = Probability of the best parse with root A for the span (i,j)

(k,j)

(i,k)

 $T[i,j,A] = \max P(B C | A) T[i,k,B] T[k,j,C]$ **K**

Lexicalized PCFGs

Lexicalized PCFGs

Outline

Parsing: CKY Algorithm

Extensions: Probabilistic and Lexicalized

Dependency Parsing

CS 272: STATISTICAL NLP (WINTER 2019)

Represent only the syntactic dependencies...

Nested Structure = Subtrees

Dependency Labels

Dependency Labels

Clausal Argument Relations	Description
NSUBJ	Nominal subject
DOBJ	Direct object
IOBJ	Indirect object
ССОМР	Clausal complement
ХСОМР	Open clausal complement
Nominal Modifier Relations	Description
NMOD	Nominal modifier
AMOD	Adjectival modifier
NUMMOD	Numeric modifier
APPOS	Appositional modifier
DET	Determiner
CASE	Prepositions, postpositions and other case markers
Other Notable Relations	Description
CONJ	Conjunct
CC	Coordinating conjunction

Dependency Trees

Projective vs Non-projective

Evaluating Dependency Parses

/									/				
ROC	ונ	She sa	iw tr	ne v	laeo	lec	ture	ROO	I	She sa	w the	video	lecture
(C	1	2	3	4		5	0		1	2 3	4	5
Go	ld						UAS	201.	F	arsed			
1	2	She	ć					U	1	. 2 '	She		~
		nsu	bj				כ			v	nsubj		1
2	0	sav	V				LAS		2	2 O K	saw		ropot
		root	t				2	40%	3	3 4~	the		detr
3	5	the					5		4	- 5 -	video	C	×
L		det					I		L		nsubj		
4	5	vid	eo		n	n			5	5 2	lectu	re	

Parsing Algorithms

Transition-based

- Fast, greedy, linear-time
- Trained for greedy search
- Features decide what to do next
- Beam search, i.e. *k*-best

Graph-based

- Slower, exhaustive algorithms
- Dynamic programming, inference
- Features used to score whole trees

Graph-based Parsing

argmax score
$$(t, \theta)$$

 $t \in T$
2nd order $\phi(e_{i}, e_{j})$
 z^{rd} order $\phi(e_{i}, e_{j}, e_{k})$
 z^{rd} order $\phi(e_{i}, e_{j}, e_{k})$
 $score(t, \theta)$
 $(1^{st} \circ der / fully factored)$
 $\xi \theta_{i} \phi(e_{i}) (c_{i}, p_{i}, l_{i})$
 $froj: Dynamic frogs anoming Tree
Nonfroj: Maximum Spanning Tree$

	~ p -> action						
Step	Stack	Word List	Action	Relation Added			
0	[root]	[book, me, the, morning, flight]	SHIFT				

Step	Stack	Word List	Action	Relation Added
0	[root]	[book, me, the, morning, flight]	SHIFT	
1	[root, book]	[me, the, morning, flight]	SHIFT	

Step	Stack	Word List	Action	Relation Added
0	[root]	[book, me, the, morning, flight]	SHIFT	
1	[root, book]	[me, the, morning, flight]	SHIFT	
2	[root, book, me]	[the, morning, flight]	RIGHTARC	$(book \rightarrow me)$

Step	Stack	Word List	Action	Relation Added
0	[root]	[book, me, the, morning, flight]	SHIFT	
1	[root, book]	[me, the, morning, flight]	SHIFT	
2	[root, book, me]	[the, morning, flight]	RIGHTARC	$(book \rightarrow me)$ \checkmark
3	← [root, book]	[the, morning, flight] 🗲	SHIFT ¢	
4	[root, book, the]	[morning, flight]	SHIFT 🖌	
5	[root, book, the, morning]	[flight]	SHIFT 🗲	

Step	Stack	Word List	Action	Relation Added
0	[root]	[book, me, the, morning, flight]	SHIFT	
1	[root, book]	[me, the, morning, flight]	SHIFT	
2	[root, book, me]	[the, morning, flight]	RIGHTARC	$(book \rightarrow me)$
3	[root, book]	[the, morning, flight]	SHIFT	
4	[root, book, the]	[morning, flight]	SHIFT	
5	[root, book, the, morning]	[flight]	SHIFT	1
6	[root, book, the, morning, flight]	• [] -	LEFTARC «	(morning \leftarrow flight)
7	[root, book, the, flight]	[]	LEFTARC	(the \leftarrow flight) ϵ

Step	Stack	Word List	Action	Relation Added
0	[root]	[book, me, the, morning, flight]	SHIFT	
1	[root, book]	[me, the, morning, flight]	SHIFT	
2	[root, book, me]	[the, morning, flight]	RIGHTARC	$(book \rightarrow me)$
3	[root, book]	[the, morning, flight]	SHIFT	
4	[root, book, the]	[morning, flight]	SHIFT	
5	[root, book, the, morning]	[flight]	SHIFT	
6	[root, book, the, morning, flight]	[]	LEFTARC	$(morning \leftarrow flight)$
7	[root, book, the, flight]		LEFTARC	$(\text{the} \leftarrow \text{flight})$
8	→[root, book, flight]	[]	RIGHTARC	$(book \rightarrow flight)$
9	[root, book]		RIGHTARC	$(root \rightarrow book)$
10	[root]	[]	Done •	-

 $\Theta \cdot \phi(stack, wlist, action)$