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Formal Definition of a CFG
A context-free grammar G is defined by four parameters: N, Σ, R, S 

N is a set of non-terminal symbols (or variables)
◦ In NLP, we often use the Penn Treebank tag set

Σ is set of terminal symbols
◦ These are the words (also sometimes called the leaf nodes of the parse tree)

R is a set of production rules, each of the form A → β 
◦ S → Aux NP VP 
◦ Nominal → Nominal Gerund VP   (recursive)

S is the start symbol (a non-terminal)



Where do grammars come from?

CS 272: STATISTICAL NLP (WINTER 2019)

Write symbolic grammar (CFG or often richer) and lexicon
S ® NP VP NN ® interest
NP ® (DT) NN NNS ® rates
NP ® NN NNS NNS ® raises
NP ® NNP VBP ® interest
VP ® V NP VBZ ® rates

Linguists

Noam Chomsky

4Ivan Sag Joan Bresnan



Coverage of grammars
Manually written grammars have two problems.

1. Coverage – the tend to only cover a subset of a language, since actual 
language use is widely varied and hugely complex.  Therefore writing a 
broad coverage grammar by hand takes an entire career.

2. Overgeneration – writing rules that will only generate grammatical 
sentences is hard.  Broad coverage tends to come at the expense of 
overgeneration.

Ann Copestake Dan Flickinger Arvind JoshiMark Steedman



Treebanks as grammar

CS 272: STATISTICAL NLP (WINTER 2019)

Treebanks == data

Initially, building a treebank might seem like it would be a lot 
slower and less useful than building a grammar.

However, a treebank gives us many things
• Reusability of the labor

• Many parsers, POS taggers, etc.
• Valuable resource for linguistics

• Broad coverage
• Frequencies and distributional information
• A way to evaluate systems

[Marcus et al. 1993, Computational Linguistics]6

Mitch Marcus
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Figure 12.8 The tree corresponding to the Brown corpus sentence in the previous figure.

marks the fact that there is no syntactic subject right before the verb to wait; instead,
the subject is the earlier NP We. Again, they are both co-indexed with the index 1.
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Figure 12.9 A sentence from the Wall Street Journal portion of the LDC Penn Treebank.
Note the use of the empty -NONE- nodes.

The Penn Treebank II and Treebank III releases added further information to
make it easier to recover the relationships between predicates and arguments. Cer-

Extracted rules

S → NP VP . DT → That JJ → full

NP → DT JJ , JJ NN JJ → cold IN → of

VP → VBD ADJP , → , NN → fire

ADJP → JJ PP JJ → empty CC → and

PP → IN NP NN → sky NN → light

NP → NN CC NN VBD → was



Some of the rules, with counts
40717 PP → IN NP
33803 S → NP-SBJ VP
22513 NP-SBJ → -NONE-
21877 NP → NP PP
20740 NP → DT NN
14153 S → NP-SBJ VP .
12922 VP → TO VP
11881 PP-LOC → IN NP
11467 NP-SBJ → PRP
11378 NP → -NONE-
11291 NP → NN
...
989 VP → VBG S
985 NP-SBJ → NN
983 PP-MNR → IN NP
983 NP-SBJ → DT
969 VP → VBN VP

100 VP → VBD PP-PRD
100 PRN → : NP :
100 NP → DT JJS
100 NP-CLR → NN
99 NP-SBJ-1 → DT NNP
98 VP → VBN NP PP-DIR
98 VP → VBD PP-TMP
98 PP-TMP → VBG NP
97 VP → VBD ADVP-TMP VP
...
10 WHNP-1 → WRB JJ
10 VP → VP CC VP PP-TMP
10 VP → VP CC VP ADVP-MNR
10 VP → VBZ S , SBAR-ADV
10 VP → VBZ S ADVP-TMP

4500 rules
for VP!

9



Redundant rules?
The Penn Treebank by this series of rules: 

VP → VBD NP PP
VP → VBD NP PP PP 

VP → VBD NP PP PP PP
VP → VBD NP PP PP PP PP

We can also represent that with a two-rule grammar as

VP → VBD NP PP 
VP → VP PP 



NP rules
NP → DT JJ NN
NP → DT JJ NNS
NP → DT JJ NN NN
NP → DT JJ JJ NN
NP → DT JJ CD NNS
NP → RB DT JJ NN NN
NP → RB DT JJ JJ NNS
NP → DT JJ JJ NNP NNS
NP → DT NNP NNP NNP NNP JJ NN
NP → DT JJ NNP CC JJ JJ NN NNS
NP → RB DT JJS NN NN SBAR
NP → DT VBG JJ NNP NNP CC NNP
NP → DT JJ NNS , NNS CC NN NNS NN 
NP → DT JJ JJ VBG NN NNP NNP FW NNP
NP → NP JJ , JJ ‘‘ SBAR ’’ NNS 

[DT The] [JJ state-owned] [JJ industrial] 
[VBG holding] [NN company] [NNP 
Instituto] [NNP Nacional] [FW de] 
[NNP Industria]

[NP Shearson’s] [JJ easy-to-film], [JJ black-and-white] 
“[SBAR Where We Stand]” [NNS commercials] 



Chomsky normal form
Real rules extracted from the Penn Treebank can get crazy. We can 
derive an equivalent grammar by converting the rules into binary 
branching rules. 

A→B C D 

can be converted to two rules:

A→B X 
X→C D 

These are called Chomsky Normal Form rules.  The resulting binary 
branching grammar is weakly equivalent because it generates the same 
set of strings but assigns different phrase structures to sentences.



Lexical Heads
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Figure 12.11 A lexicalized tree from Collins (1999).

Figure 12.11 shows an example of such a tree from Collins (1999), in which each
non-terminal is annotated with its head.

For the generation of such a tree, each CFG rule must be augmented to identify
one right-side constituent to be the head daughter. The headword for a node is
then set to the headword of its head daughter. Choosing these head daughters is
simple for textbook examples (NN is the head of NP) but is complicated and indeed
controversial for most phrases. (Should the complementizer to or the verb be the
head of an infinite verb-phrase?) Modern linguistic theories of syntax generally
include a component that defines heads (see, e.g., (Pollard and Sag, 1994)).

An alternative approach to finding a head is used in most practical computational
systems. Instead of specifying head rules in the grammar itself, heads are identified
dynamically in the context of trees for specific sentences. In other words, once
a sentence is parsed, the resulting tree is walked to decorate each node with the
appropriate head. Most current systems rely on a simple set of handwritten rules,
such as a practical one for Penn Treebank grammars given in Collins (1999) but
developed originally by Magerman (1995). For example, the rule for finding the
head of an NP is as follows (Collins, 1999, p. 238):

• If the last word is tagged POS, return last-word.
• Else search from right to left for the first child which is an NN, NNP, NNPS, NX, POS,

or JJR.
• Else search from left to right for the first child which is an NP.
• Else search from right to left for the first child which is a $, ADJP, or PRN.
• Else search from right to left for the first child which is a CD.
• Else search from right to left for the first child which is a JJ, JJS, RB or QP.
• Else return the last word

Selected other rules from this set are shown in Fig. 12.12. For example, for VP
rules of the form VP ! Y1 · · · Yn, the algorithm would start from the left of Y1 · · ·
Yn looking for the first Yi of type TO; if no TOs are found, it would search for the
first Yi of type VBD; if no VBDs are found, it would search for a VBN, and so on.
See Collins (1999) for more details.



Lexicalized Grammars
Unlike rules derived from the Penn Treebank, which tends to emphases 
phrase structure rules, many modern syntactic theories emphasize the 
role of the lexicon.  The lexicon can encode information like
subcategorization frames.

1. HPSG – Head-driven phrase structure grammars

2. LFG – Lexical functional grammars

3. TAG – Tree adjoining Grammar

4. CCG – Combinatory Categorial Grammar



Combinatory Categorial 
Grammar (CCG)
A set of categories, a lexicon that associates words with categories, and 
a set of rules that govern how categories combine in context.

word category

flight N atomic

Miami NP atomic

cancel (S\NP)/NP complex category / 
function



Parsing in CCG
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Y to its right and returns a value of X; (X\Y) is the same except it seeks its argument
to the left.

The set of atomic categories is typically very small and includes familiar el-
ements such as sentences and noun phrases. Functional categories include verb
phrases and complex noun phrases among others.

The Lexicon

The lexicon in a categorial approach consists of assignments of categories to words.
These assignments can either be to atomic or functional categories, and due to lexical
ambiguity words can be assigned to multiple categories. Consider the following
sample lexical entries.

flight : N
Miami : NP
cancel : (S\NP)/NP

Nouns and proper nouns like flight and Miami are assigned to atomic categories,
reflecting their typical role as arguments to functions. On the other hand, a transitive
verb like cancel is assigned the category (S\NP)/NP: a function that seeks an NP on
its right and returns as its value a function with the type (S\NP). This function can,
in turn, combine with an NP on the left, yielding an S as the result. This captures the
kind of subcategorization information discussed in Section 12.3.4, however here the
information has a rich, computationally useful, internal structure.

Ditransitive verbs like give, which expect two arguments after the verb, would
have the category ((S\NP)/NP)/NP: a function that combines with an NP on its
right to yield yet another function corresponding to the transitive verb (S\NP)/NP
category such as the one given above for cancel.

Rules

The rules of a categorial grammar specify how functions and their arguments com-
bine. The following two rule templates constitute the basis for all categorial gram-
mars.

X/Y Y ) X (12.4)

Y X\Y ) X (12.5)

The first rule applies a function to its argument on the right, while the second
looks to the left for its argument. We’ll refer to the first as forward function appli-

cation, and the second as backward function application. The result of applying
either of these rules is the category specified as the value of the function being ap-
plied.

Given these rules and a simple lexicon, let’s consider an analysis of the sentence
United serves Miami. Assume that serves is a transitive verb with the category
(S\NP)/NP and that United and Miami are both simple NPs. Using both forward
and backward function application, the derivation would proceed as follows:

United serves Miami
NP (S\NP)/NP NP

>
S\NP

<
S

Rules are simple: 
X/Y   Y   ⇒ X forward function application

Y  X\Y  ⇒ X backward function application
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Categorial grammar derivations are illustrated growing down from the words,
rule applications are illustrated with a horizontal line that spans the elements in-
volved, with the type of the operation indicated at the right end of the line. In this
example, there are two function applications: one forward function application indi-
cated by the > that applies the verb serves to the NP on its right, and one backward
function application indicated by the < that applies the result of the first to the NP
United on its left.

With the addition of another rule, the categorial approach provides a straight-
forward way to implement the coordination metarule described earlier on page 14.
Recall that English permits the coordination of two constituents of the same type,
resulting in a new constituent of the same type. The following rule provides the
mechanism to handle such examples.

X CONJ X ) X (12.6)

This rule states that when two constituents of the same category are separated by a
constituent of type CONJ they can be combined into a single larger constituent of
the same type. The following derivation illustrates the use of this rule.

We flew to Geneva and drove to Chamonix
NP (S\NP)/PP PP/NP NP CONJ (S\NP)/PP PP/NP NP

> >
PP PP

> >
S\NP S\NP

<F>
S\NP

<
S

Here the two S\NP constituents are combined via the conjunction operator <F>

to form a larger constituent of the same type, which can then be combined with the
subject NP via backward function application.

These examples illustrate the lexical nature of the categorial grammar approach.
The grammatical facts about a language are largely encoded in the lexicon, while the
rules of the grammar are boiled down to a set of three rules. Unfortunately, the basic
categorial approach does not give us any more expressive power than we had with
traditional CFG rules; it just moves information from the grammar to the lexicon. To
move beyond these limitations CCG includes operations that operate over functions.

The first pair of operators permit us to compose adjacent functions.

X/Y Y/Z ) X/Z (12.7)

Y\Z X\Y ) X\Z (12.8)

The first rule, called forward composition, can be applied to adjacent con-forward

composition

stituents where the first is a function seeking an argument of type Y to its right, and
the second is a function that providesY as a result. This rule allows us to compose
these two functions into a single one with the type of the first constituent and the
argument of the second. Although the notation is a little awkward, the second rule,
backward composition is the same, except that we’re looking to the left instead ofbackward

composition

to the right for the relevant arguments. Both kinds of composition are signalled by a
B in CCG diagrams, accompanied by a < or > to indicate the direction.

The next operator is type raising. Type raising elevates simple categories to thetype raising

status of functions. More specifically, type raising takes a category and converts
it to function that seeks as an argument a function that takes the original category

Parsing in CCG

Rules are simple: 
X/Y   Y   ⇒ X forward function application

Y  X\Y  ⇒ X backward function application

X CONJ X ⇒ X Conjunction



CCG Bank
Julia Hockenmaier created a 
treebank for CCG.

It was created by translating 
phrase-structure trees from the 
Penn Treebank. 

It resulted in 48,934 sentences 
paired with CCG derivations, and a 
lexicon with 44,000 words and 1200 
categories.

Julia Hockenmaier
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Headlines
Iraqi Head Seeks Arms

Juvenile Court to Try Shooting Defendant

Teacher Strikes Idle Kids

Stolen Painting Found by Tree

Kids Make Nutritious Snacks

Local High School Dropouts Cut in Half

British Left Waffles on Falkland Islands

Red Tape Holds Up New Bridges

Ban on Nude Dancing on Governor’s Desk

Trump Wins on Economy, but More Lies Ahead

Examples from Chris Manning, Jason Eisner,  and Andrew McCallum



Ambiguity
Ambiguity can arise because of words with multiple senses or POS tags.  
Many kinds of ambiguity are also structural.



Attachment Ambiguity
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Grammar Lexicon

S ! NP VP Det ! that | this | the | a
S ! Aux NP VP Noun ! book | flight | meal | money
S ! VP Verb ! book | include | prefer
NP ! Pronoun Pronoun ! I | she | me
NP ! Proper-Noun Proper-Noun ! Houston | NWA
NP ! Det Nominal Aux ! does
Nominal ! Noun Preposition ! from | to | on | near | through
Nominal ! Nominal Noun
Nominal ! Nominal PP
VP ! Verb
VP ! Verb NP
VP ! Verb NP PP
VP ! Verb PP
VP ! VP PP
PP ! Preposition NP
Figure 13.1 The L1 miniature English grammar and lexicon.
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Figure 13.2 Two parse trees for an ambiguous sentence. The parse on the left corresponds to the humorous
reading in which the elephant is in the pajamas, the parse on the right corresponds to the reading in which
Captain Spaulding did the shooting in his pajamas.

Crackers is ambiguous because the phrase in my pajamas can be part of the NP
headed by elephant or a part of the verb phrase headed by shot. Figure 13.2 illus-
trates these two analyses of Marx’s line using rules from L1.

Structural ambiguity, appropriately enough, comes in many forms. Two common
kinds of ambiguity are attachment ambiguity and coordination ambiguity.

A sentence has an attachment ambiguity if a particular constituent can be at-attachment

ambiguity

tached to the parse tree at more than one place. The Groucho Marx sentence is
an example of PP-attachment ambiguity. Various kinds of adverbial phrases are
also subject to this kind of ambiguity. For instance, in the following example the
gerundive-VP flying to Paris can be part of a gerundive sentence whose subject is
the Eiffel Tower or it can be an adjunct modifying the VP headed by saw:

(13.1) We saw the Eiffel Tower flying to Paris.



Parsing Algorithms
NLP systems need to choose a single correct parse from many, many 
possible parses.  They need to perform syntactic disambiguation.

Effective disambiguation algorithms require a variety of information to
be integrated into parsing algorithms. Such information includes:

1. statistical information 

2. semantic understanding

3. contextual knowledge

We’ll start by looking at an efficient dynamic programming algorithm, 
and then see how to add statistics to it.



The Parsing Problem

CS 272: STATISTICAL NLP (WINTER 2019)

Given sentence x and  grammar G,

Recognition “Proof” is a deduction, valid parse tree.
Is sentence x in the grammar? If so, prove it.

Parsing
Even with small grammars, brute force grows exponentially!

Show one or more derivations for x in G.

“Book that flight”

24



Left to Right?
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The old man the boat.

The complex houses married and single soldiers and their families.

Garden Path Sentences



Top Down Parsing
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“Book that flight”
Considers only valid trees
But are inconsistent with the words!

26



Bottom-up Parsing
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Builds only consistent trees
But most of them are invalid (don’t go anywhere)!

“Book that flight”

27



Chomsky Normal Form
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Context free grammar where all non-terminals to go:
- 2 non-terminals, or
- A single terminal A ® B C D ® w

Converting to CNF

A ® B
B ® C D
B ® w

A ® C D
A ® w

Case 1

A ® B C D E
A ® X E
X ® Y D
Y ® B C

Case 2

28
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Original Grammar Chomsky Normal Form

29



Dynamic Programming

CS 272: STATISTICAL NLP (WINTER 2019)

table[i,j] = Set of all valid non-terminals for the constituent span (i,j)

Recursion Rule: A ® B C
A

B C

(i,j)

(i,k) (k,j)

If you find a k such that
B is in table[i,k], and
C is in table[k,j], then A should be in table[i,j]

Base case
Rule: A ® word[j]

A should be in table[j-1,j]

A (j-1,j)

word[j]

30



Dynamic Programming
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table[i,j] = Set of all valid non-terminals for the constituent span (i,j)

Recursion Rule: A ® B C
A

B C

(i,j)

(i,k) (k,j)

If you find a k such that
B is in table[i,k], and
C is in table[k,j], then A should be in table[i,j]

Base case
Rule: A ® word[j]

A should be in table[j-1,j]

A (j-1,j)

word[j]

31



CKY Algorithm

DEMO AT HTTP://LXMLS.IT.PT/2015/CKY.HTML 32



CKY Algorithm

CS 272: STATISTICAL NLP (WINTER 2019) 33

[0,1] [0,2] [0,3] [0,4] [0,5]

[1,2] [1,3] [1,4] [1,5]

[2,3] [2,4] [2,5]

[3,4] [3,5]

[4,5]

Book the flight through TWA



CKY Algorithm
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Book the flight through TWA



CKY Algorithm
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CKY Algorithm: Complexity
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Memory

Time

|N|: Number of non-terminals

|R|: Number of rules

n: Number of tokens in the sentence



CKY Algorithm: Complexity
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Memory

Time

|N|: Number of non-terminals

|R|: Number of rules

n: Number of tokens in the sentence



Outline
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Dependency Parsing

Extensions: Probabilistic and Lexicalized

Parsing: CKY Algorithm

38



Ambiguity: Which parse?
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I shot an elephant in my pajamas.

39



Finding the Best Parse Tree
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Cats scratch people with cats with claws.

40



Finding the Best Parse Tree
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Cats scratch people with cats with claws.

41



Probabilistic CFGs

CS 272: STATISTICAL NLP (WINTER 2019)

Same as a regular context-free grammar:
• Terminal, non-terminals, and rules
• Additionally, attach a probability to each rule!

Rule: A ® B C Probability: P(A ® B C | A)

Compute the probability of a parse tree:

42



Probabilistic CFGs

CS 272: STATISTICAL NLP (WINTER 2019)

Same as a regular context-free grammar:
• Terminal, non-terminals, and rules
• Additionally, attach a probability to each rule!

Rule: A ® B C Probability: P(A ® B C | A)

Compute the probability of a parse tree:

43



Example of a PCFG
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Example of a PCFG
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Estimating the probabilities
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Estimating the probabilities
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The Parsing Problem
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Recognition

Given sentence x and  grammar G,

“Proof” is a deduction, valid parse tree.
Is sentence x in the grammar? If so, prove it.

Parsing

Even with small grammars, grows exponentially!

Show one or more derivations for x in G.

48



Probabilistic CKY Algorithm

CS 272: STATISTICAL NLP (WINTER 2019)

T[i,j,A] = Probability of the best parse with root A for the span (i,j)

Base case
Rule: P( A ® word[j] )

T[j-1,j,A] = P(word[j] | A)

Recursion Rule: P( A ® B C )
A

B C

(i,j)

(i,k) (k,j)

Try every position k, and every non-terminal pair:

A (j-1,j)

word[j]

T[i,j,A] =  max   P(B C| A)  T[i,k,B] T[k,j,C]

49



Lexicalized PCFGs
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Lexicalized PCFGs
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Lexicalizing a CFG
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Lexicalizing a CFG
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Lexicalizing a CFG
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Lexicalizing a CFG
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Lexicalizing a CFG
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Parsing Algorithms
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Ac
cu

ra
cy

Running time

Transition-based

• Fast, greedy, linear-time
• Trained for greedy search
• Features decide what to do next
• Beam search, i.e. k-best

Graph-based

• Slower, exhaustive algorithms
• Dynamic programming, inference
• Features used to score whole trees

57



Graph-based Parsing
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