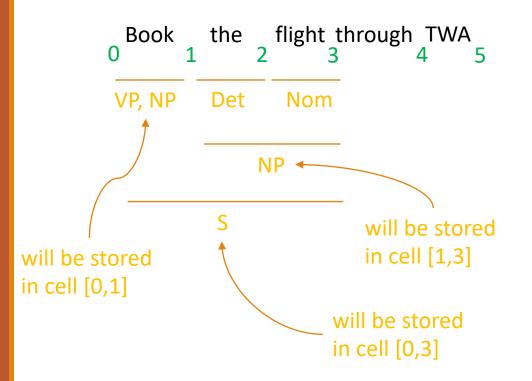
Statistical Constituency Parsing

JURAFSKY AND MARTIN CHAPTER 14

Based on slides from Sameer Singh, Dan Jurafsky, Noah Smith, Slav Petrov, and everyone else they copied from.

Recap: CKY Algorithm

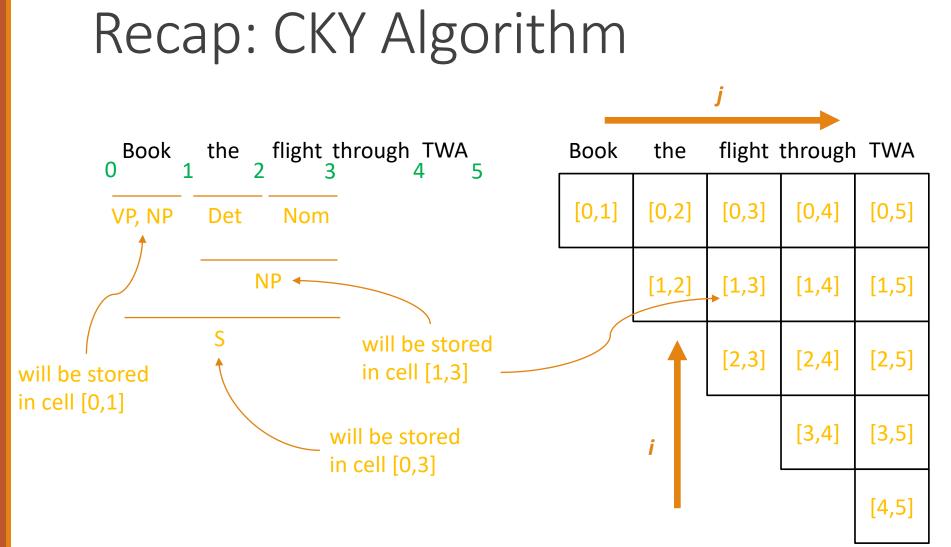


CKY uses a two-dimensional matrix to encode the structure of a tree.

For a sentence of length n, we will use an $(n + 1) \times (n + 1)$ matrix.

You can think of the indexes as pointing at the gaps between the input words.

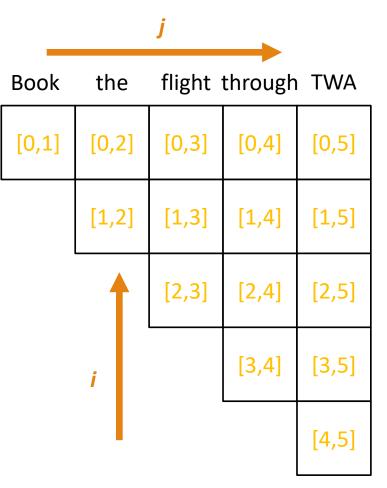
All constituents that can span positions *i* through *j* of the input will be stored in the cell [i,j]



We only work with the upper-triangular portion of the $(n + 1) \times (n + 1)$ matrix. Each cell [i, j] records all non-terminals that can span positions i through j of the input.

Recap: CKY Algorithm

```
function CKY-PARSE(words, grammar)
                                                                      returns table
                                                                      for-j←from 1 to LENGTH(words) do
                                                                                      for all \{A \mid A \rightarrow words[j] \in grammar\}
i iterates
                                                                                                   table[j-1, j] \leftarrow table[j-1, j] \cup A
over columns
                                                                                       for i \leftarrow \text{from } j - 2 \text{ downto } 0 \text{ do}
                                                                                                       for k \leftarrow i+1 to j-1 do
                                                                                                                       for all \{A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \mid A \rightarrow BC \in grammar \text{ and } A \rightarrow BC \in grammar \text{ and } A \rightarrow BC \in grammar \text{ and } A \rightarrow
       i iterates
         over rows
                                                                                                                                                                                                    B \in table[i,k] and
                                                                                                                                                                                               C \in table[k,j]:
                                                                                                                                                      table[i,j] \leftarrow table[i,j] \cup A
                        k iterates
                        split points
                        between i
                        and i
```



Recap: CKY Algorithm

```
function CKY-PARSE(words, grammar)
returns table
                                                                     flight through TWA
                                                    Book
                                                             the
for j \leftarrow from 1 to LENGTH(words) do
  record POS tags for word j in cell [j,j-1]
                                                     [0,1]
                                                             [0,2]
                                                                     [0,3]
                                                                             [0,4]
 for i\leftarrowfrom j-2 downto 0 do
   for k \leftarrow i+1 to j-1 do
                                                             [1,2]
                                                                     [1,3]
                                                                             [1,4]
       find all rules A \rightarrow BC, such that
          B spans i-k,
                                                                     [2,3]
                                                                             [2,4]
          C spans k-j
       and then record A in cell [i,j]
                                                                             [3,4]
                                                             i
```

[0,5]

[1,5]

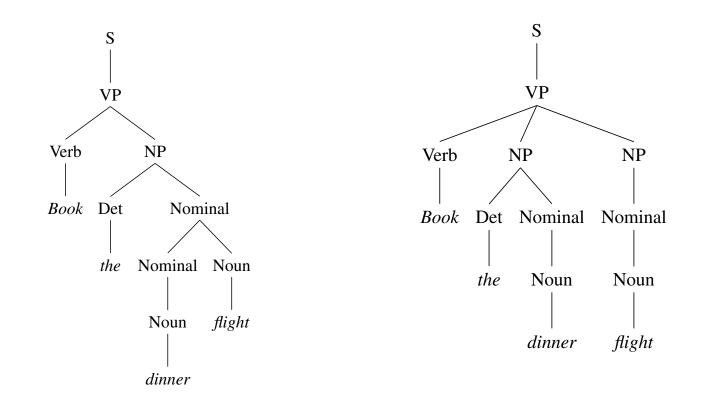
[2,5]

[3,5]

[4,5]

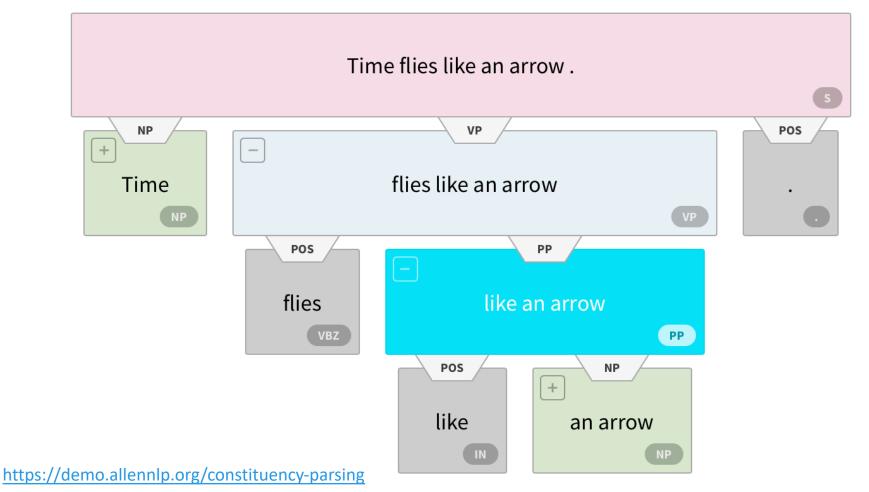
Find best parse

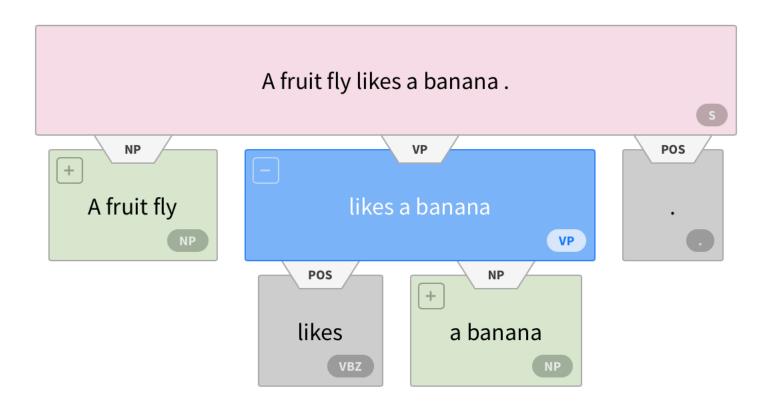
CKY parsing record **ALL** possible parses into the table. How do we figure out what the best parse is for a sentence?

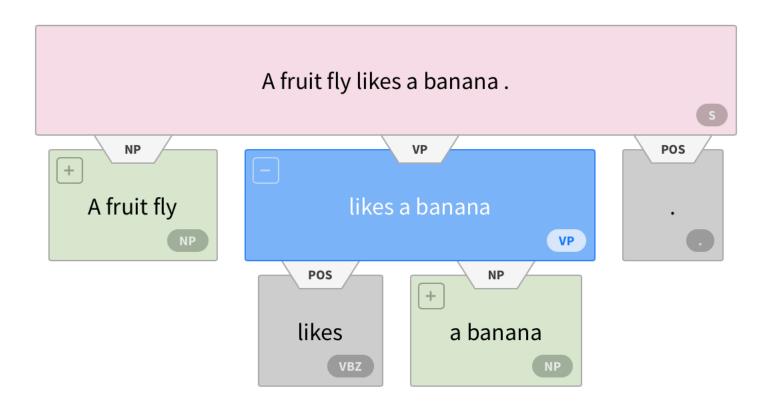


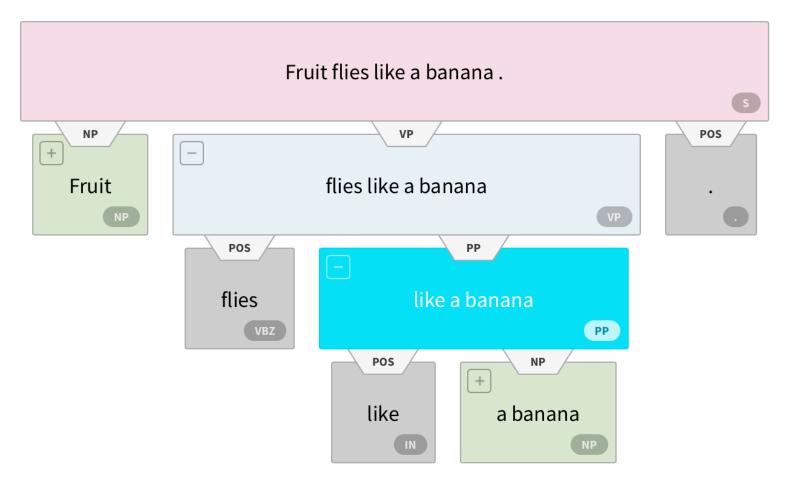
Time flies like an arrow.

Time flies like an arrow.









Formal Definition of a CFG

A context-free grammar G is defined by four parameters: N, Σ , R, S

N is a set of non-terminal symbols (or variables)

• In NLP, we often use the Penn Treebank tag set

Σ is set of **terminal symbols**

• These are the words (also sometimes called the leaf nodes of the parse tree)

R is a set of production rules, each of the form $A \rightarrow \beta$

- $S \rightarrow Aux NP VP$
- Nominal \rightarrow Nominal Gerund VP (recursive)

S is the start symbol (a non-terminal)

Formal Definition of a <u>PCFG</u>

A **PROBABILISTIC** context-free grammar *G* is defined by four parameters: N, Σ , R, S.

R is a set of production rules, each of the form $A \rightarrow \beta$ [probability]

- $S \rightarrow NP VP$ [0.8]
- $S \rightarrow Aux NP VP [0.15]$
- $\circ S \rightarrow VP \qquad [0.05]$

For a rule $A \rightarrow BC$, the probability can be represented

```
P(A \rightarrow BC)
or
P(A \rightarrow BC \mid A)
or
P(RHS \mid LHS)
```

Grammar		Lexicon
$S \rightarrow NP VP$	[.80]	$Det \rightarrow that [.10] \mid a [.30] \mid the [.60]$
$S \rightarrow Aux NP VP$	[.15]	Noun $\rightarrow book [.10] \mid flight [.30]$
$S \rightarrow VP$	[.05]	<i>meal</i> [.05] <i>money</i> [.05]
$NP \rightarrow Pronoun$	[.35]	<i>flight</i> [.40] <i>dinner</i> [.10]
$NP \rightarrow Proper-Noun$	[.30]	$Verb \rightarrow book [.30] \mid include [.30]$
$NP \rightarrow Det Nominal$	[.20]	<i>prefer</i> [.40]
$NP \rightarrow Nominal$	[.15]	$Pronoun \rightarrow I [.40] \mid she [.05]$
Nominal \rightarrow Noun	[.75]	<i>me</i> [.15] <i>you</i> [.40]
<i>Nominal</i> \rightarrow <i>Nominal Noun</i>	[.20]	<i>Proper-Noun</i> \rightarrow <i>Houston</i> [.60]
Nominal \rightarrow Nominal PP	[.05]	<i>NWA</i> [.40]
$VP \rightarrow Verb$	[.35]	$Aux \rightarrow does [.60] \mid can [.40]$
$VP \rightarrow Verb NP$	[.20]	Preposition \rightarrow from [.30] to [.30]
$VP \rightarrow Verb NP PP$	[.10]	<i>on</i> [.20] <i>near</i> [.15]
$VP \rightarrow Verb PP$	[.15]	<i>through</i> [.05]
$VP \rightarrow Verb NP NP$	[.05]	
$VP \rightarrow VP PP$	[.15]	
$PP \rightarrow Preposition NP$	[1.0]	

 $\sum_{\beta} P(A \to \beta) = 1$

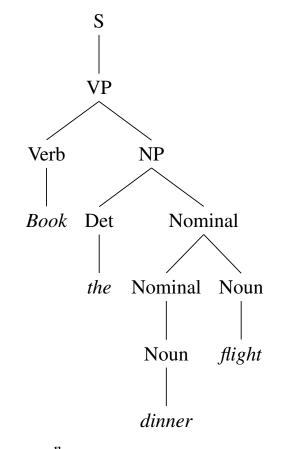
Probabilistic CFGs

A PCFG assigns a probability to each parse tree **T** of a sentence **S**. This is useful in disambiguation, since we can pick the most likely parse tree.

The probability of a parse T is defined as the product of the probabilities of all the rules used to expand each of the non-terminal nodes in the parse tree.

$$P(T,S) = \prod_{i=1}^{n} P(RHS_i | LHS_i)$$

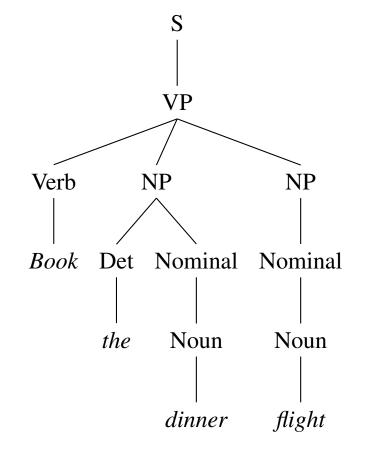
Probability of a parse



Rules P				
S	\rightarrow	VP	.05	
VP	\rightarrow	Verb NP	.20	
NP	\rightarrow	Det Nominal	.20	
Nominal	\rightarrow	Nominal Noun	.20	
Nominal	\rightarrow	Noun	.75	
Verb	\rightarrow	book	.30	
Det	\rightarrow	the	.60	
Noun	\rightarrow	dinner	.10	
Noun	\rightarrow	flight	.40	

 $P(T,S) = \prod_{i=1}^{n} P(RHS_i | LHS_i) = .05 * .20 * .20 * .20 * .75 * .30 * .60 * .10 * .40 = 2.2 \times 10^{-6}$

Probability of a parse

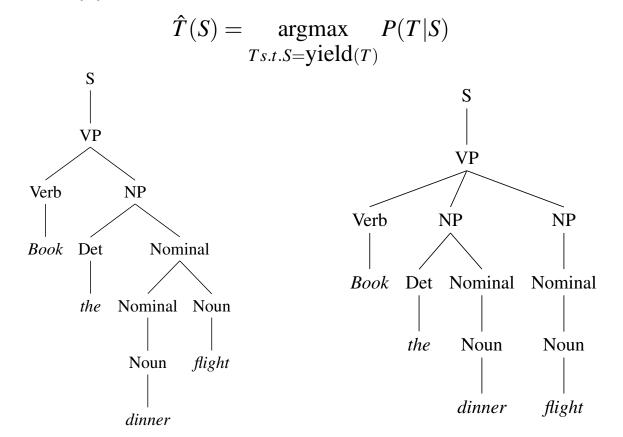


Rules P				
S	\rightarrow	VP	.05	
VP	\rightarrow	Verb NP NP	.10	
NP	\rightarrow	Det Nominal	.20	
NP	\rightarrow	Nominal	.15	
Nominal	\rightarrow	Noun	.75	
Nominal	\rightarrow	Noun	.75	
Verb	\rightarrow	book	.30	
Det	\rightarrow	the	.60	
Noun	\rightarrow	dinner	.10	
Noun	\rightarrow	flight	.40	

 $P(T,S) = \prod_{i=1}^{n} P(RHS_i | LHS_i) = .05 * .10 * .20 * .15 * .75 * .75 * .30 * .60 * .10 * .40 = 6.1 \times 10^{-7}$

Finding best parse

Pick the parse with the highest probability. Consider all the possible parse trees for a given sentence *S*. The string of words *S* is called the yield of any parse tree over *S*.



Joint Probability of T and S

$$P(T,S) = \prod_{i=1}^{n} P(RHS_i | LHS_i)$$

By definition of joint probability:

P(T,S) = P(T)P(S|T)

But since a parse tree includes all the words of the sentence, P(S|T) is 1

$$P(T,S) = P(T)P(S|T) = P(T)$$

Estimating the probabilities

$$P(d \rightarrow \beta | d) = \frac{\# d \rightarrow \beta}{\# d}$$

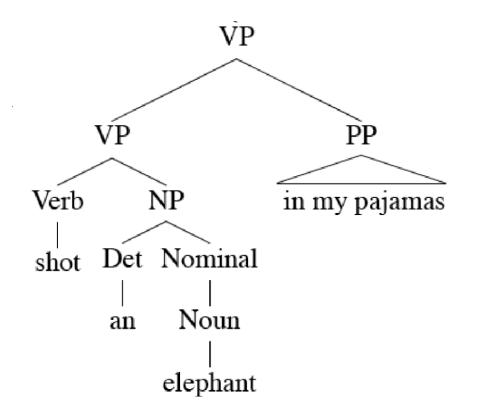
Problem 1

Poor independence assumptions: CFG rules impose an independence assumption on probabilities that leads to poor modeling of structural dependencies across the parse tree.

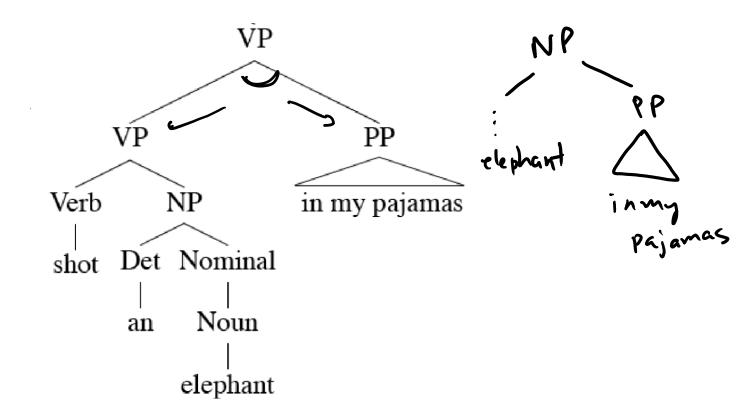
Problem 2

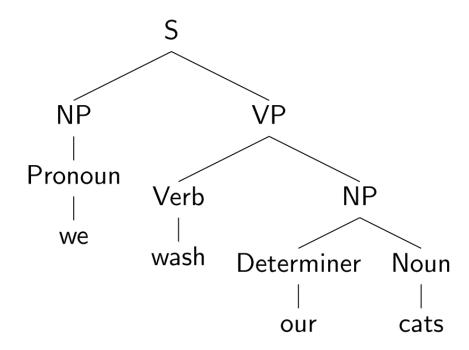
Lack of lexical conditioning: CFG rules don't model syntactic facts about specific words, leading to problems with subcategorization ambiguities, preposition attachment, and coordinate structure ambiguities.

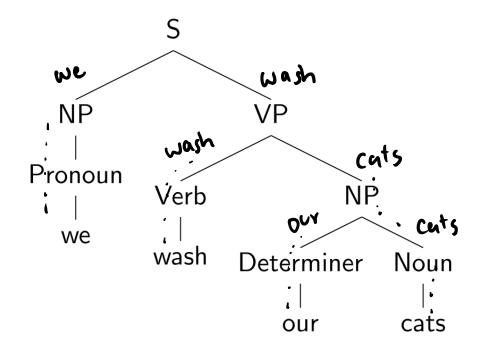
Lexicalized PCFGs

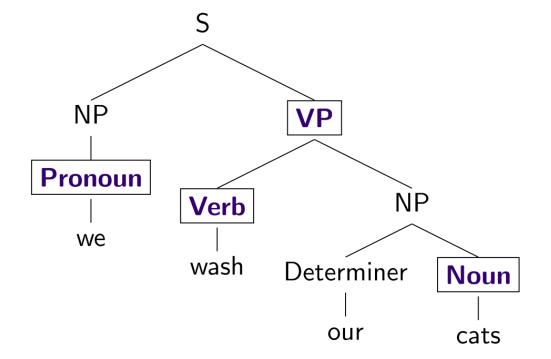


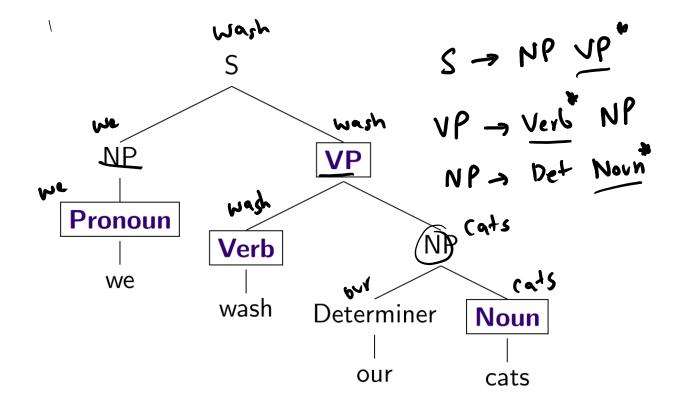
Lexicalized PCFGs

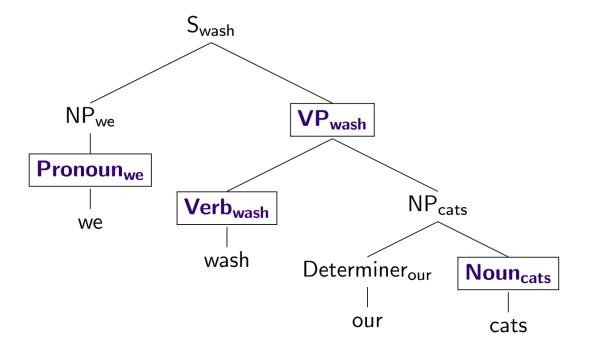












The Parsing Problem

Given sentence **x** and grammar **G**,

Recognition

Is sentence **x** in the grammar? If so, prove it. "Proof" is a deduction, valid parse tree.

Parsing

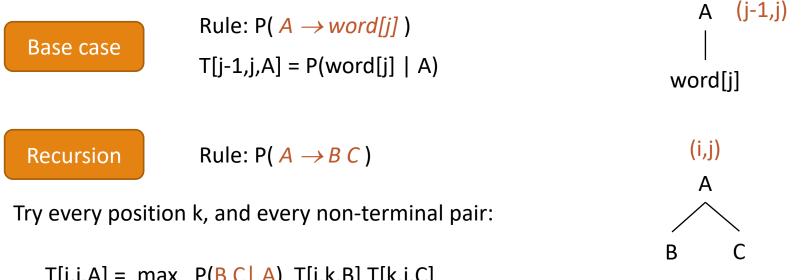
Show one or more derivations for **x** in **G**.

 $\operatorname*{argmax}_{\boldsymbol{t} \in \mathcal{T}_{\boldsymbol{x}}} p(\boldsymbol{t} \mid \boldsymbol{x})$

Even with small grammars, grows exponentially!

Probabilistic CKY Algorithm

T[i,j,A] = Probability of the best parse with root A for the span (i,j)



(k,j)

(i,k)

 $T[i,j,A] = \max P(B C | A) T[i,k,B] T[k,j,C]$ **K**

Outline

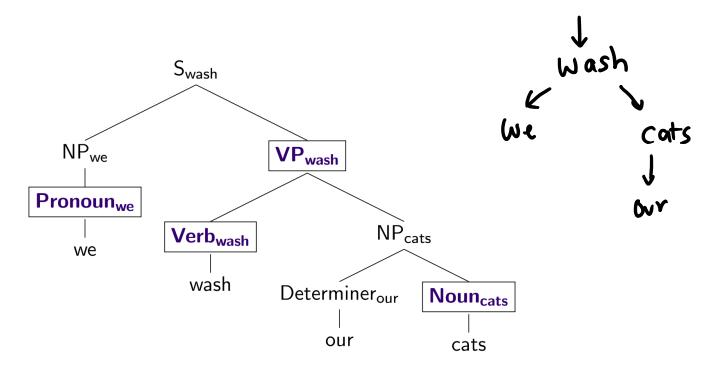
Parsing: CKY Algorithm

Extensions: Probabilistic and Lexicalized

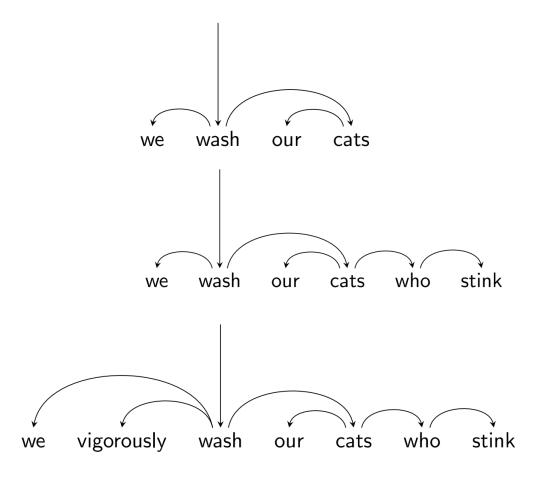
Dependency Parsing

CS 272: STATISTICAL NLP (WINTER 2019)

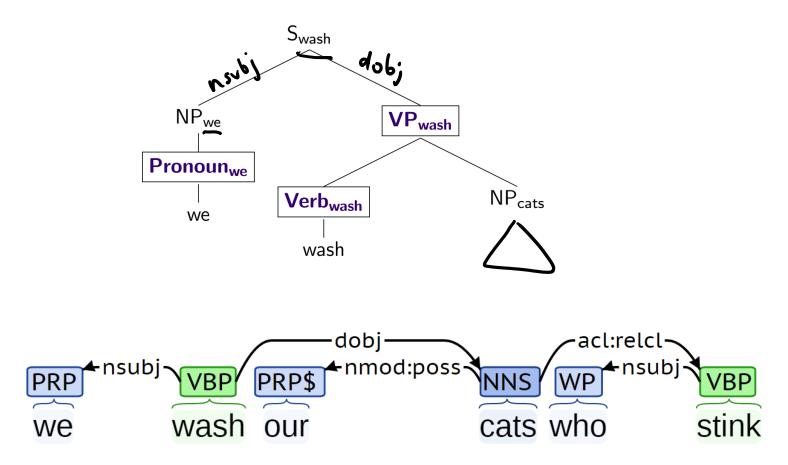
Represent only the syntactic dependencies...



Nested Structure = Subtrees



Dependency Labels



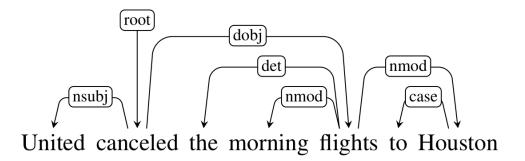
Dependency Labels

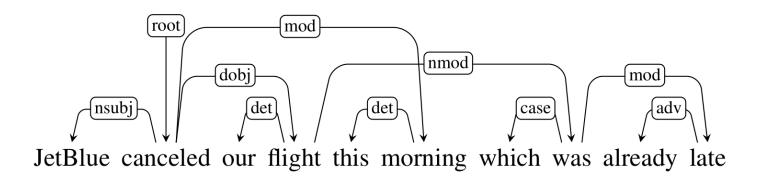
Clausal Argument Relations	Description
NSUBJ	Nominal subject
DOBJ	Direct object
IOBJ	Indirect object
ССОМР	Clausal complement
ХСОМР	Open clausal complement
Nominal Modifier Relations	Description
NMOD	Nominal modifier
AMOD	Adjectival modifier
NUMMOD	Numeric modifier
APPOS	Appositional modifier
DET	Determiner
CASE	Prepositions, postpositions and other case markers
Other Notable Relations	Description
CONJ	Conjunct
CC	Coordinating conjunction

Dependency Trees

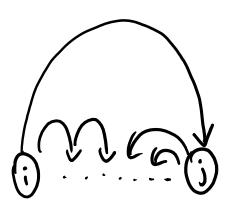
Dependency Trees

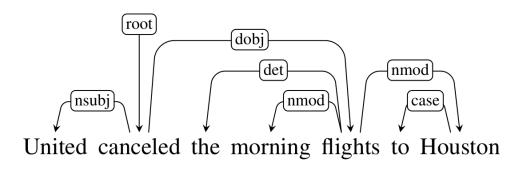
Projective vs Non-projective

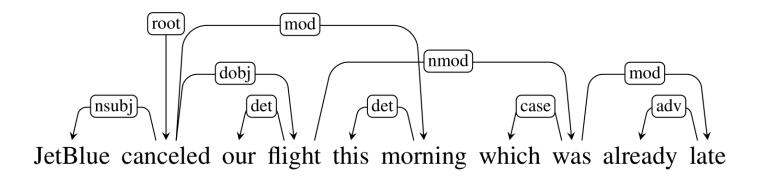




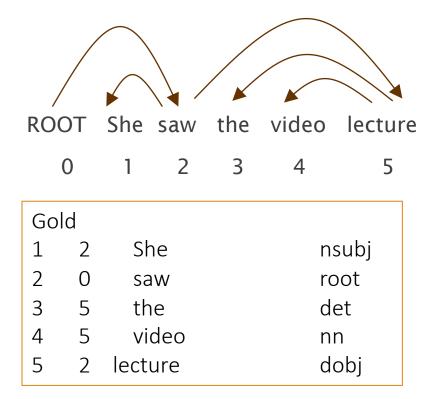
Projective vs Non-projective

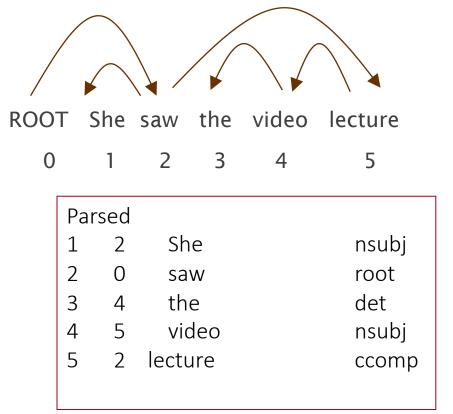






Evaluating Dependency Parses





Evaluating Dependency Parses

ROOT	She saw	the video	lecture	ROOT	She	saw	the	video	lecture
0	1 2	3 4	ŨAS	0	1	2	3	4	5
Gold			. 4 :	807.	Parsed	_			_
1 2	She	n	subj 5		1 2	Sh	е		nsubj
2 0	saw	r	oot		2 0	✓ sa	W		root
3 5	the	d	et LAS		3 4	χ th	е		det
4 5	video	n	n o	, <i>oj</i>	4 5		deo		nsubj
5 2	lecture	d	obj ·	40 1.	5 2	lectu	ıre		ccomp
L			5			~			×

Parsing Algorithms

Transition-based

- Fast, greedy, linear-time
- Trained for greedy search
- Features decide what to do next
- Beam search, i.e. *k*-best

Graph-based

- Slower, exhaustive algorithms
- Dynamic programming, inference
- Features used to score whole trees

