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Review: Desirable Properties 
for Meaning Representations

1. Verifiability – compare some meaning representation (MR) to a 
representation in a knowledge base (KB). 

2. Unambiguous Representations – each ambiguous natural language 
meaning corresponds to a separate MR

3. Canonical Forms – paraphrases are collapsed to one MR

4. Make Inferences – draw valid conclusions based on the MR of 
inputs and its background knowledge in KB

5. Match variables – variables can be replaced by some object in the 
KB so an entire proposition will then match 



Model-Theoretic Semantics
A model allows us to bridge the gap between a formal representation 
and the world.  The model stands in for a particular state of affairs in the 
world. 

The domain of a model is the set of objects that are being represented.  
Each distinct thing (person, restaurant, cuisine) corresponds to a unique 
element in the domain

Properties of objects (like whether a restaurant is expensive) in a model 
correspond to sets of objects.  

Relations between object (like whether a restaurant serves a cuisine) are 
are sets of tuples. 
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Domain D = {a,b,c,d,e, f ,g,h, i, j}
Matthew, Franco, Katie and Caroline a,b,c,d
Frasca, Med, Rio e, f ,g
Italian, Mexican, Eclectic h, i, j

Properties

Noisy Noisy = {e, f ,g}
Frasca, Med, and Rio are noisy

Relations

Likes Likes = {ha, f i,hc, f i,hc,gi,hb,ei,hd, f i,hd,gi}
Matthew likes the Med
Katie likes the Med and Rio
Franco likes Frasca
Caroline likes the Med and Rio

Serves Serves = {h f , ji,hg, ii,he,hi}
Med serves eclectic
Rio serves Mexican
Frasca serves Italian

Figure 16.2 A model of the restaurant world.

presence of the tuple ha,ei. If, as it is in this case, the tuple is present in the model,
then we can conclude that Matthew likes Frasca is true; if it isn’t then we can’t.

This is all pretty straightforward—we’re using sets and operations on sets to
ground the expressions in our meaning representations. Of course, the more inter-
esting part comes when we consider more complex examples such as the following:

(16.13) Katie likes the Rio and Matthew likes the Med.
(16.14) Katie and Caroline like the same restaurants.
(16.15) Franco likes noisy, expensive restaurants.
(16.16) Not everybody likes Frasca.

Our simple scheme for grounding the meaning of representations is not adequate
for examples such as these. Plausible meaning representations for these examples
will not map directly to individual entities, properties, or relations. Instead, they
involve complications such as conjunctions, equality, quantified variables, and nega-
tions. To assess whether these statements are consistent with our model, we’ll have
to tear them apart, assess the parts, and then determine the meaning of the whole
from the meaning of the parts.

Consider the first example above. A meaning representation for this example
will include two distinct propositions expressing the individual patron’s preferences,
conjoined with some kind of implicit or explicit conjunction operator. Our model
doesn’t have a relation that encodes pairwise preferences for all of the patrons and
restaurants in our model, nor does it need to. We know from our model that Matthew
likes the Med and separately that Katie likes the Rio (that is, the tuples ha, f i and
hc,gi are members of the set denoted by the Likes relation). All we really need to
know is how to deal with the semantics of the conjunction operator. If we assume
the simplest possible semantics for the English word and, the whole statement is
true if it is the case that each of the components is true in our model. In this case,
both components are true since the appropriate tuples are present and therefore the
sentence as a whole is true.

What we’ve done with this example is provide a truth-conditional semantics
truth-

conditional

semantics
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Katie likes Rio
Katie à c
Rio à g

likes à Likes

<c,g> ∈ Likes 
so Katie likes Rio

is True



Review: First-Order Logic
FOL is a meaning representation language that satisfies the desirable 
qualities that we outlined. It provides a computational basis for 
verifiability and inference.

1. Truth conditions for logical formula involving terms and predicates 
like Near(Goldie, Upenn)

2. Truth conditions for multiple formula with logical connectives 

3. Truth conditions for quantifiers 



Review: Logical Connectives
We can conjoin formula with logical connectives like and (∧), or (∨), not
(¬), and implies (⇒)
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relations out in the external world being modeled. We can accomplish this by em-
ploying the model-theoretic approach introduced in Section 16.2. Recall that this
approach employs simple set-theoretic notions to provide a truth-conditional map-
ping from the expressions in a meaning representation to the state of affairs being
modeled. We can apply this approach to FOL by going through all the elements in
Fig. 16.3 on page 7 and specifying how each should be accounted for.

We can start by asserting that the objects in our world, FOL terms, denote ele-
ments in a domain, and asserting that atomic formulas are captured either as sets of
domain elements for properties, or as sets of tuples of elements for relations. As an
example, consider the following:

(16.34) Centro is near Bacaro.

Capturing the meaning of this example in FOL involves identifying the Terms
and Predicates that correspond to the various grammatical elements in the sentence
and creating logical formulas that capture the relations implied by the words and
syntax of the sentence. For this example, such an effort might yield something like
the following:

Near(Centro,Bacaro) (16.35)

The meaning of this logical formula is based on whether the domain elements de-
noted by the terms Centro and Bacaro are contained among the tuples denoted by
the relation denoted by the predicate Near in the current model.

The interpretation of formulas involving logical connectives is based on the
meanings of the components in the formulas combined with the meanings of the
connectives they contain. Figure 16.4 gives interpretations for each of the logical
operators shown in Fig. 16.3.

P Q ¬ P P ^ Q P _ Q P =) Q
False False True False False True
False True True False True True
True False False False True False
True True False True True True

Figure 16.4 Truth table giving the semantics of the various logical connectives.

The semantics of the ^ (and) and ¬ (not) operators are fairly straightforward,
and are correlated with at least some of the senses of the corresponding English
terms. However, it is worth pointing out that the _ (or) operator is not disjunctive
in the same way that the corresponding English word is, and that the =) (im-
plies) operator is only loosely based on any common-sense notions of implication
or causation.

The final bit we need to address involves variables and quantifiers. Recall that
there are no variables in our set-based models, only elements of the domain and
relations that hold among them. We can provide a model-based account for formulas
with variables by employing the notion of a substitution introduced earlier on page
9. Formulas involving 9 are true if a substitution of terms for variables results in
a formula that is true in the model. Formulas involving 8 must be true under all
possible substitutions.

16.3.5 Inference

A meaning representation language must support inference to add valid new propo-
sitions to a knowledge base or to determine the truth of propositions not explicitly
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Review: Quantifiers and 
Variables
There are two quantifiers in FOL: 

1. Existential quantifier – ∃ – “There exists” – Is true if it holds at least 
one thing that matches the variable

2. Universal quantifier – ∀ – “For all” – Is true if it holds true for all of 
the things that match the variable



Review: Existential Quantifier
There is a restaurant that serves Mexican food near Penn

We use the existential quantifier and a variable to represent the 
indefinite noun phrase “a restaurant”.

∃x Restaurant(x) ∧ Serves(x,MexicanFood) ∧
Near((LocationOf(x),LocationOf(Penn)) 

For this to be true there must be at least one object such that if we 
were to substitute it for the variable x, the resulting formula would be 
true.



Review: Universal Quantifier
All restaurants in Philly are closed.

∀xRestaurant(x) ∧ Is((LocationOf(x),
Philadelphia) 
⇒ Closed(x) 

The ∀ operator states that for the logical formula to be true, the 
substitution of any object in the knowledge base for the universally 
quantified variable should result in a true formula. 



Lambda Notation
Lambda notation provides a way to abstract from fully specified FOL 
formulas by matching variables. 

λx.P(x) 

Such expressions consist of the symbol λ , followed by one or more 
variables, followed by a FOL formula that makes use of those variables

This process of λ-reduction consists of a simple textual replacement of 
the λ variables and the removal of the λ. 

λx.P(x)(A) 

P(A)



Lambda Example
One λ-expression can be used within another:

λx.λy.Near(x,y) 

Apply lambda λ-reduction to x:

λx.λy.Near(x,y)(Bacaro) 

λy.Near(Bacaro,y)

Apply lambda λ-reduction to y:

λy.Near(Bacaro,y)(Centro)

Near(Bacaro,Centro)

λ -notation provides a way to incrementally gather arguments to a 
predicate



Inference
A meaning representation language must support inference to add valid 
new propositions to a knowledge base or to determine the truth of 
propositions not explicitly in the KB.

Modus ponens provides  if-then reasoning:

α
α ⇒ β 

β 

α is the antecedent

β is the consequent 



Inference
VegetarianRestaurant(Leaf )
∀xVegetarianRestaurant(x) ⇒ Serves(x,VegetarianFood) 

Serves(Leaf ,VegetarianFood) 

Here, the formula VegetarianRestaurant(Leaf ) matches the antecedent 
of the rule, thus allowing us to use modus ponens to conclude 
Serves(Leaf ,VegetarianFood).



Forward Chaining
Forward chaining systems use modus ponens whenever new individual 
facts are added to the KB.  

All applicable implication rules are found and applied, each resulting in 
the addition of new facts to the knowledge base. 

These new propositions can also be used to fire implication rules 
applicable to them. The process continues until no further facts can be 
deduced.



Backward Chaining
In backward chaining, modus ponens is run in reverse to prove specific 
propositions called queries.

1. See if the query formula is true by determining if it is present in the 
knowledge base.

2. If not, search for applicable implication rules present in the 
knowledge base.

Applicable rules are ones where the consequent matches the query 
formula. If there are any such rules, then the query can be proved if the 
antecedent of any one them can be shown to be true. This can be 
performed recursively.



Backward Chaining ≠ 
Reasoning Backwards
Backward chaining reasons from queries to known facts.

Reasoning backwards goes from known consequents to unknown 
antecedents.

Reasoning backwards is an invalid.
Sometimes it is useful for determining  what is plausible. Plausible 
reasoning from consequents to antecedents is known as abduction.



Soundness and Completeness
Forward and backward chaining are both sound (meaning all inferences 
that we draw using them are valid). However, neither is complete. 

The fact that they are not complete means that there are valid 
inferences that cannot be found by systems using these methods alone. 

An alternative inference technique called resolution is but sound and 
complete, but it is far more computationally expensive, so most systems 
just use chaining.



Representing Events
One limitation of FOL is that it only allows events with a fixed arity
(number of arguments).   

Ideally, there would be a direct mapping from a verb’s subcategorization 
frame onto a FOL predicate.  

Leaf serves vegetarian fare 
=
Serves(Leaf ,VegetarianFare) 

However, events are more complicated since events may involve a host 
of participants, props, times and locations. 



Representing Events
Choosing the correct number of arguments for the predicate 
representing the meaning of eat is tricky.

1. I ate.

2. I ate a turkey sandwich.

3. I ate a turkey sandwich at my desk. 

4. I ate at my desk.

5. I ate lunch.

6. I ate a turkey sandwich for lunch.

7. I ate a turkey sandwich for lunch at my desk 



Event variables
Event variables to allow us to make assertions about an event without 
using a single predicate with a fixed number of arguments.

1. Event predicates are refactored with an existentially quantified 
variable as their only argument.

∃e Eating(e) 

2. We can introduce additional predicates to represent the other 
information we have about the event. These predicates take an 
event variable as their first argument and related FOL terms as their 
second argument

∃e Eating(e) ∧ Eater(e, Speaker) ∧ Eaten(e, TurkeySandwich) 



Neo-Davidsonian Events
1. Events are captured with predicates that take a single event variable 

as an argument. 

2. We don’t need to specify a fixed number of arguments for a FOL 
predicate.  Instead, we can glue on as many as are provided in the 
input.

3. No more roles are postulated than are mentioned in the input. 

4. The connections across related inputs that share the same predicate 
are satisfied without the need for additional inference. 



Temporal logic gives us ways of representing when events occur.

Representing Time



Temporal logic gives us ways of representing when events occur.

Time flows forward and that events are associated with either points or 
intervals in time, as on a timeline. 

We can order distinct events by situating them on the timeline; one 
event precedes another if the flow of time leads from the first event to 
the second. 

Represent the current moment in time as a point, and we can then 
easily define familiar notions of past, present, and future.

Representing Time



Tense
These sentences only differ in the tense of the verb.

1. I arrived in New York.

2. I am arriving in New York.

3. I will arrive in New York.

A Neo-Davidsonian event representation would give us:

∃e Arriving(e) ∧ Arriver(e, Speaker) ∧ Destination(e, NewYork) 

How can we represent the temporal information specified by the verb 
tense? By predicating additional information about the event variable e. 



Tense
Past tense – I arrived in NY.

∃e Arriving(e) ∧ Arriver(e, Speaker) ∧ Destination(e, NewYork) 
∧ IntervalOf(e, i) ∧ EndPoint(i, n) ∧ Precedes(n,Now) 

Present tense – I am arriving in NY.

∃e Arriving(e) ∧ Arriver(e, Speaker) ∧ Destination(e, NewYork) 
∧ IntervalOf(e, i) ∧ MemberOf(i,Now) 

Future tense – I will arrive in NY.

∃e Arriving(e) ∧ Arriver(e, Speaker) ∧ Destination(e, NewYork) 
∧ IntervalOf(e, i) ∧ EndPoint(i, n) ∧ Precedes(Now, n) 



Temporal Expressions

Lexical triggers for temporal expressions:

Temporal normalization
• mapping a temporal expression to either normalization a 

specific point in time or to a duration



Other Temporal Phenomena 
Order – a pair of events can precede or follow each other, they or 
overlap and may have different onset times.

Duration – we might want to model how long an event typically takes
◦ I went to college to get a degree
◦ I went to the salon to get a haircut

Frequency / periodicity 
◦ Presidential elections take place ever 4 years

Stationarity – permanent versus impermanent events
◦ The Statue of Liberty is in New York 
◦ The Coronavirus is in New York 



Description Logic
Description Logics use ontologies to encode relationships between type 
of entities, and allow us to specify rules associated with certain types 
like 

ItalianRestaurant ⊑ Restaurant⊓∃hasCuisine.ItalianCuisine
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relationships. The choice between these methods hinges on the use to which the re-
sulting categories will be put and the feasibility of formulating precise definitions for
many naturally occurring categories. We’ll discuss the first option here and return to
the notion of definitions later in this section.

To directly specify a hierarchical structure, we can assert subsumption relationssubsumption

between the appropriate concepts in a terminology. The subsumption relation is
conventionally written as C v D and is read as C is subsumed by D; that is, all
members of the category C are also members of the category D. Not surprisingly, the
formal semantics of this relation are provided by a simple set relation; any domain
element that is in the set denoted by C is also in the set denoted by D.

Adding the following statements to the TBox asserts that all restaurants are com-
mercial establishments and, moreover, that there are various subtypes of restaurants.

Restaurant v CommercialEstablishment (16.66)

ItalianRestaurant v Restaurant (16.67)

ChineseRestaurant v Restaurant (16.68)

MexicanRestaurant v Restaurant (16.69)

Ontologies such as this are conventionally illustrated with diagrams such as the one
shown in Fig. 16.6, where subsumption relations are denoted by links between the
nodes representing the categories.

Restaurant

Chinese
Restaurant 

Mexican
Restaurant

Italian
Restaurant

Commercial
Establishment

Figure 16.6 A graphical network representation of a set of subsumption relations in the
restaurant domain.

Note, that it was precisely the vague nature of semantic network diagrams like
this that motivated the development of Description Logics. For example, from this
diagram we can’t tell whether the given set of categories is exhaustive or disjoint.
That is, we can’t tell if these are all the kinds of restaurants that we’ll be dealing with
in our domain or whether there might be others. We also can’t tell if an individual
restaurant must fall into only one of these categories, or if it is possible, for example,
for a restaurant to be both Italian and Chinese. The DL statements given above are
more transparent in their meaning; they simply assert a set of subsumption relations
between categories and make no claims about coverage or mutual exclusion.

If an application requires coverage and disjointness information, then such in-
formation must be made explicitly. The simplest ways to capture this kind of in-
formation is through the use of negation and disjunction operators. For example,
the following assertion would tell us that Chinese restaurants can’t also be Italian
restaurants.

ChineseRestaurantv not ItalianRestaurant (16.70)



Conclusion
Formal meaning representations that capture the meaning-related 
content of linguistic inputs. These representations are intended to 
bridge the gap from language to common-sense knowledge of the 
world. 

Meaning representation languages like FOL specify syntax and 
semantics of these representations. Many others have been used in NLP 
and AI.

Important elements of semantic representation including states and 
events can be captured in FOL. 

Modelling temporal phenomena is an important challenge.



Information 
Extraction
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Information Extraction (IE)
• Information extraction (IE), turns the 

unstructured text information into structured 
data
• Populate a relational database to enable further 

processing, support queries



Template Filling
Citing high fuel prices, United Airlines said Friday it has increased
fares by $6 per round trip on flights to some cities also served by
lower cost carriers. American Airlines, a unit of AMR Corp.,
immediately matched the move, spokesman Tim Wagner said.
United, a unit of UAL Corp., said the increase took effect
Thursday and applies to most routes where it competes against
discount carriers, such as Chicago to Dallas and Denver to San
Francisco.



Steps in IE
•NER and co-reference resolution
• relation extraction
• spouse-of, child-of, employer-of, partof, membership-in, 

located-in
• event extraction
• temporal expression normalization
• template filling



Named Entity Recognition



Named Entity Recognition
• Find spans of text that constitute proper names
• Ambiguity of segmentation
• What’s an entity and what isn’t
• Where the boundaries are

• Classify the type of the entity
• Type ambiguity



Category Ambiguity in NER

Examples of type ambiguities in the use of the name Washington



NER Algorithms & Evaluations
•Word to word sequence labelling
• Capture boundary and type
• Feature based
•Neural

• Precision, Recall, F1
• Segmentation component can cause problems 



Relation Extraction
•A relation consists of a set of ordered tuples over 

elements of a domain
• The domain elements corresponds to the named 

entities



Tim Wagner [is a spokesman] for American Airlines.
United [is a unit of] UAL Corp.
American [is a unit of] AMR.





Unified Medical Language 
System

Given a medical sentence like:
Doppler echocardiography can be used to diagnose left anterior 
descending artery stenosis in patients with type 2 diabetes

Extract the UMLS relation:
Echocardiography (Doppler) Diagnoses Acquired stenosis



Wikipedia info boxes



RDF Triples
• Resource Description Framework
•RDF triple is a tuple of
• Entity-relation-entity, aka
• Subject-predicate-object expression
• Subject: University of Pennsylvania
• Predicate: location
•Object: Philadelphia, PA



DBpedia is a community effort to extract structured information from
Wikipedia and to make this information available on the Web. DBpedia
allows you to ask sophisticated queries against datasets derived from
Wikipedia and to link other datasets on the Web to Wikipedia data. We
describe the extraction of the DBpedia datasets, and how the resulting
information is published on the Web for human-and machine-consumption.
We describe some emerging applications from the DBpedia community and
show how website authors can facilitate DBpedia content within their sites.
Finally, we present the current status of interlinking DBpedia with other open
datasets on the Web and outline how DBpedia could serve as a nucleus for
an emerging Web of open data.



Freebase, WordNet, other 
ontologies

• Freebase relations:
• people/person/nationality
• location/location/contains
• people/person/place-of-birth
• biology/organism classification

•WordNet relations:
• is-a, instance-of
• hypernyms/hyponyms
• Giraffe is-a ruminant is-a ungulate is-a mammal is-a vertebrate is-a 

animal…



Strategies for relation extraction

•Hand-written patterns
• Supervised machine learning
• Semi-supervised machine learning
• Bootstrapping
• Distant supervision
•Unsupervised machine learning



Hearst Patterns
Agar is a substance prepared from a mixture of red algae, such as 
Gelidium, for laboratory or industrial use.

She suggests that the following lexico-syntactic pattern

NP0 such as NP1 {,NP2 …, ( and|or) NPi}, i ≥ 1
implies the following semantics

∀NPi , i ≥ 1, hyponym(Npi, NP0

allowing us to infer

hyponym(Gelidium, red algae)



Machine learning techniques
• Supervised: training corpus annotated with 

manually annotated with fixed set of relations 
and entities
• Semi-supervised: high-precision seed patters, or 

seed tuples, are used to bootstrap more 
examples
•Distant supervision: start with a huge number of 

seeds, learn noisy pattern fields (e.g. 100k 
examples of birth-place-of from 
infoboxes, help learn the corresponding text 
patterns)



Semisupervised Relation 
Extraction

Bootstrapping proceeds by taking the entities in the seed pair, and 
then finding sentences (on the web, or whatever dataset we are 
using) that contain both entities.



Task: Create airline/hub pairs
Seed: Ryanair has a hub at Charleroi

use this seed fact to discover new patterns by finding other mentions 
of this relation in our corpus

Sentences found:
Budget airline Ryanair, which uses Charleroi as a hub, scrapped all 
weekend flights out of the airport.
All flights in and out of Ryanair’s Belgian hub at Charleroi airport 
were grounded on Friday...
A spokesman at Charleroi, a main hub for Ryanair, estimated that 
8000 passengers had already been affected.

Patterns extracted:
/ [ORG], which uses [LOC] as a hub /
/ [ORG]'s hub at [LOC] /
/ [LOC] a main hub for [ORG] /

Example



Distant Supervision

R: place of birth
(e1, e2): <Edwin Hubble, Marshfield>, <Albert Einstein,Ulm>, etc
Sentences: Hubble was born in Marshfield; Einstein, born (1879), 
Ulm; Hubble’s birthplace in Marshfield..., etc



Open IE
Unsupervised relation extraction
Find all strings of words that satisfy the tripe 
relation.

United has a hub in Chicago, which is the headquarters of 
United Continental Holdings.
r1: <United, has a hub in, Chicago>
r2: <Chicago, is the headquarters of, United Continental 
Holdings>



Evaluation of Relation Extraction
• Supervised
• Test sets with human annotated, gold-standard relations 

and computing precision, recall, and F-measure
• Semi and Unsupervised
• Human evaluations
• Compute precision at different levels of recall



Temporal Expression Extraction

Lexical triggers for temporal expressions:

• Temporal expression recognition
• Temporal normalization
• mapping a temporal expression to either 

normalization a specific point in time or to a duration



Event Extraction
The task of event extraction is to identify mentions of events in 
texts. An event mention is any expression denoting an event or 
state that can be assigned to a point in time or an interval in 
time.

In English events are typically expressed verbs like exploded.  
However, there are also some nouns, like explosion, that denote 
an event.

Some “light verbs” like make, take, and have often do not denote 
events.  Instead, the event is often expressed by the nominal 
direct object (took a flight).



Event Extraction

Events can be classified as actions, states, reporting
events, perception events, etc. The aspect, tense, 
and modality of each event also needs to be 
extracted. 





Temporal ordering of events
Delta Air Lines earnings soared 33% to a record in 
the fiscal first quarter, bucking the industry trend 
toward declining profits.

• Soaringe1 is included in the fiscal first quartert58
• Soaringe1 is simultaneous with the buckinge3
•Declininge4 includes soaringe1



Scripts
How do people organize all the knowledge 
they must have in order to understand? How 
do people know what behavior is appropriate 
for a particular situation?

Scripts consist of prototypical sequences of 
sub-events, participants, and their roles. 

The strong expectations provided by these 
scripts can help with the classification of 
entities, the assignment of entities into roles 
and relations.

Most critically scripts can be used to draw 
inferences that fill in things that have been left 
unsaid.
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Abstract

Hand-coded scripts were used in the 1970-80s
as knowledge backbones that enabled infer-
ence and other NLP tasks requiring deep se-
mantic knowledge. We propose unsupervised
induction of similar schemata called narrative

event chains from raw newswire text.

A narrative event chain is a partially ordered
set of events related by a common protago-
nist. We describe a three step process to learn-
ing narrative event chains. The first uses unsu-
pervised distributional methods to learn narra-
tive relations between events sharing corefer-
ring arguments. The second applies a tempo-
ral classifier to partially order the connected
events. Finally, the third prunes and clusters
self-contained chains from the space of events.
We introduce two evaluations: the narrative

cloze to evaluate event relatedness, and an or-

der coherence task to evaluate narrative order.
We show a 36% improvement over baseline
for narrative prediction and 25% for temporal
coherence.

1 Introduction

This paper induces a new representation of struc-
tured knowledge called narrative event chains (or
narrative chains). Narrative chains are partially or-
dered sets of events centered around a common pro-

tagonist. They are related to structured sequences of
participants and events that have been called scripts

(Schank and Abelson, 1977) or Fillmorean frames.
These participants and events can be filled in and
instantiated in a particular text situation to draw in-
ferences. Chains focus on a single actor to facili-

tate learning, and thus this paper addresses the three
tasks of chain induction: narrative event induction,
temporal ordering of events and structured selection

(pruning the event space into discrete sets).
Learning these prototypical schematic sequences

of events is important for rich understanding of text.
Scripts were central to natural language understand-
ing research in the 1970s and 1980s for proposed
tasks such as summarization, coreference resolu-
tion and question answering. For example, Schank
and Abelson (1977) proposed that understanding
text about restaurants required knowledge about the
Restaurant Script, including the participants (Cus-
tomer, Waiter, Cook, Tables, etc.), the events consti-
tuting the script (entering, sitting down, asking for
menus, etc.), and the various preconditions, order-
ing, and results of each of the constituent actions.

Consider these two distinct narrative chains.
accused X W joined

X claimed W served

X argued W oversaw

dismissed X W resigned

It would be useful for question answering or tex-
tual entailment to know that ‘X denied ’ is also a
likely event in the left chain, while ‘ replaces W’
temporally follows the right. Narrative chains (such
as Firing of Employee or Executive Resigns) offer
the structure and power to directly infer these new
subevents by providing critical background knowl-
edge. In part due to its complexity, automatic in-
duction has not been addressed since the early non-
statistical work of Mooney and DeJong (1985).

The first step to narrative induction uses an entity-
based model for learning narrative relations by fol-
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Figure 6: An automatically learned Prosecution Chain.
Arrows indicate the before relation.

likely events from consideration. It is advantageous
to consider a space of possible narrative events and
the ordering within, not a closed list.

However, it is worthwhile to construct discrete
narrative chains, if only to see whether the combina-
tion of event learning and ordering produce script-
like structures. This is easily achievable by using
the PMI scores from section 4 in an agglomerative
clustering algorithm, and then applying the ordering
relations from section 5 to produce a directed graph.

Figures 6 and 7 show two learned chains after
clustering and ordering. Each arrow indicates a be-
fore relation. Duplicate arrows implied by rules of
transitivity are removed. Figure 6 is remarkably ac-
curate, and figure 7 addresses one of the chains from
our introduction, the employment narrative. The
core employment events are accurate, but cluster-
ing included life events (born, died, graduated) from
obituaries of which some temporal information is in-
correct. The Timebank corpus does not include obit-
uaries, thus we suffer from sparsity in training data.

7 Discussion

We have shown that it is possible to learn narrative
event chains unsupervised from raw text. Not only
do our narrative relations show improvements over
a baseline, but narrative chains offer hope for many
other areas of NLP. Inference, coherence in summa-
rization and generation, slot filling for question an-
swering, and frame induction are all potential areas.

We learned a new measure of similarity, the nar-

Figure 7: An Employment Chain. Dotted lines indicate
incorrect before relations.

rative relation, using the protagonist as a hook to ex-
tract a list of related events from each document.
The 37% improvement over a verb-only baseline
shows that we may not need presorted topics of doc-
uments to learn inferences. In addition, we applied
state of the art temporal classification to show that
sets of events can be partially ordered. Judgements
of coherence can then be made over chains within
documents. Further work in temporal classification
may increase accuracy even further.

Finally, we showed how the event space of narra-
tive relations can be clustered to create discrete sets.
While it is unclear if these are better than an uncon-
strained distribution of events, they do offer insight
into the quality of narratives.

An important area not discussed in this paper is
the possibility of using narrative chains for semantic
role learning. A narrative chain can be viewed as
defining the semantic roles of an event, constraining
it against roles of the other events in the chain. An
argument’s class can then be defined as the set of
narrative arguments in which it appears.

We believe our model provides an important first
step toward learning the rich causal, temporal and
inferential structure of scripts and frames.
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Program for AQUAINT through Broad Agency An-
nouncement (BAA) N61339-06-R-0034. Thanks to the
reviewers for helpful comments and the suggestion for a
non-full-coreference baseline.
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Finally, we showed how the event space of narra-
tive relations can be clustered to create discrete sets.
While it is unclear if these are better than an uncon-
strained distribution of events, they do offer insight
into the quality of narratives.

An important area not discussed in this paper is
the possibility of using narrative chains for semantic
role learning. A narrative chain can be viewed as
defining the semantic roles of an event, constraining
it against roles of the other events in the chain. An
argument’s class can then be defined as the set of
narrative arguments in which it appears.
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Narrative Cloze Test
A cloze test removes words from a text and asks the participant to 
fill in the missing language item. Cloze tests require the ability to 
understand context and vocabulary in order to identify the 
correct language or part of speech that belongs in the deleted 
passages. This exercise is commonly administered for the 
assessment of native and second language learning and 
instruction.

Today, I went to the ________ and bought some milk and eggs. I 
knew it was going to rain, but I forgot to take my ________, and 
ended up getting wet on the way.



Narrative Cloze Task
event1 event2 ________  event4 …  eventn

Event vocabulary

take → nsubj
tell → nsubj
see → nsubj
…
persuade → dobj
sail → nsubj
regard → dobj

What word 
should fill in the 

gap?

Narrative Cloze Task



Template Filling
Templates represent scripts with a fixed set of 
slots that take slot-filler values
Train two separate supervised systems

1. Template recognition
2. Role-filler extraction

Most earlier systems were based on handwritten 
regular expressions and grammar rules.



The Gun Violence Database

Ellie Pavlick and Chris Callison-Burch, University of Pennsylvania

http://gun-violence.org/



Goals of the GVDB
Collect data about gun violence in the US to 
facilitate public health research.
Draw sample from local newspapers and television 
stations that publish online.
Use machine learning and crowdsourcing to extract 
structured data from text.



GVDB Template


