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Encoder-Decoder Networks
We can abstract away from the task of MT to talk about the general 
encoder-decoder architecture: 

1. An encoder takes an input sequence xn
1, and generates a 

corresponding sequence of contextualized representations, hn
1.

2. A context vector, c, is a function of hn
1, and conveys the essence of 

the input to the decoder. 

3. A decoder accepts c as input and generates an arbitrary length 
sequence of hidden states hm

1 , from which can be used to create a 
corresponding sequence of output states ym

1 .



Encoder-decoder networks



Encoder-decoder networks
• An encoder that accepts an input sequence and generates a 
corresponding sequence of contextualized representations

• A context vector that conveys the essence of the input to the decoder

• A decoder, which accepts context vector as input and generates an 
arbitrary length sequence of hidden states, from which a corresponding 
sequence of output states can be obtained



Encoder
Pretty much any kind of RNN or its variants can be used as an encoder.  
Researchers have used simple RNNs, LSTMs, GRUs, or even 
convolutional networks.

A widely used encoder design makes use of stacked Bi-LSTMs where the 
hidden states from top layers from the forward and backward passes 
are concatenated 



Stacked RNNs
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9.3 Deep Networks: Stacked and Bidirectional RNNs

As suggested by the sequence classification architecture shown in Fig. 9.9, recurrent
networks are quite flexible. By combining the feedforward nature of unrolled com-
putational graphs with vectors as common inputs and outputs, complex networks
can be treated as modules that can be combined in creative ways. This section intro-
duces two of the more common network architectures used in language processing
with RNNs.

9.3.1 Stacked RNNs
In our examples thus far, the inputs to our RNNs have consisted of sequences of
word or character embeddings (vectors) and the outputs have been vectors useful for
predicting words, tags or sequence labels. However, nothing prevents us from using
the entire sequence of outputs from one RNN as an input sequence to another one.
Stacked RNNs consist of multiple networks where the output of one layer serves asStacked RNNs
the input to a subsequent layer, as shown in Fig. 9.10.

y1 y2 y3
yn

x1 x2 x3 xn

RNN 1

RNN 3

RNN 2

Figure 9.10 Stacked recurrent networks. The output of a lower level serves as the input to
higher levels with the output of the last network serving as the final output.

It has been demonstrated across numerous tasks that stacked RNNs can outper-
form single-layer networks. One reason for this success has to do with the network’s
ability to induce representations at differing levels of abstraction across layers. Just
as the early stages of the human visual system detect edges that are then used for
finding larger regions and shapes, the initial layers of stacked networks can induce
representations that serve as useful abstractions for further layers — representations
that might prove difficult to induce in a single RNN.

The optimal number of stacked RNNs is specific to each application and to each
training set. However, as the number of stacks is increased the training costs rise
quickly.



Bidirectional RNNs9.4 • MANAGING CONTEXT IN RNNS: LSTMS AND GRUS 15

y1

x1 x2 x3 xn

RNN 1 (Left to Right)

RNN 2 (Right to Left)

+

y2

+

y3

+

yn

+

Figure 9.11 A bidirectional RNN. Separate models are trained in the forward and backward
directions with the output of each model at each time point concatenated to represent the state
of affairs at that point in time. The box wrapped around the forward and backward network
emphasizes the modular nature of this architecture.
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Figure 9.12 A bidirectional RNN for sequence classification. The final hidden units from
the forward and backward passes are combined to represent the entire sequence. This com-
bined representation serves as input to the subsequent classifier.

access to the entire preceding sequence, the information encoded in hidden states
tends to be fairly local, more relevant to the most recent parts of the input sequence
and recent decisions. It is often the case, however, that distant information is critical
to many language applications. To see this, consider the following example in the
context of language modeling.

(9.15) The flights the airline was cancelling were full.



Decoder
For the decoder, autoregressive generation is used to produce an 
output sequence, an element at a time, until an end-of-sequence 
marker is generated. 

This incremental process is guided by the context provided by the 
encoder as well as any items generated for earlier states by the decoder. 
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Figure 10.4 Basic architecture for an abstract encoder-decoder network. The context is a
function of the vector of contextualized input representations and may be used by the decoder
in a variety of ways.

Encoder

Simple RNNs, LSTMs, GRUs, convolutional networks, as well as transformer net-
works (discussed later in this chapter), can all be been employed as encoders. For
simplicity, our figures show only a single network layer for the encoder, however,
stacked architectures are the norm, where the output states from the top layer of the
stack are taken as the final representation. A widely used encoder design makes use
of stacked Bi-LSTMs where the hidden states from top layers from the forward and
backward passes are concatenated as described in Chapter 9 to provide the contex-
tualized representations for each time step.

Decoder

For the decoder, autoregressive generation is used to produce an output sequence,
an element at a time, until an end-of-sequence marker is generated. This incremen-
tal process is guided by the context provided by the encoder as well as any items
generated for earlier states by the decoder. Again, a typical approach is to use an
LSTM or GRU-based RNN where the context consists of the final hidden state of
the encoder, and is used to initialize the first hidden state of the decoder. (To help
keep things straight, we’ll use the superscripts e and d where needed to distinguish
the hidden states of the encoder and the decoder.) Generation proceeds as described
earlier where each hidden state is conditioned on the previous hidden state and out-
put generated in the previous state.

c = he
n

hd
0 = c

hd
t = g(ŷt�1,hd

t�1)

zt = f (hd
t )

yt = softmax(zt)

Recall, that g is a stand-in for some flavor of RNN and ŷt�1 is the embedding for the
output sampled from the softmax at the previous step.

A weakness of this approach is that the context vector, c, is only directly avail-
able at the beginning of the process and its influence will wane as the output se-
quence is generated. A solution is to make the context vector c available at each step

Encoder

Decoder



Decoder Weaknesses
In early encoder-decoder approaches, the context vector c was only 
directly available at the beginning of the generation process.

This meant that its influence became less-and-less imporant as the 
output sequence was generated. 

One solution is to make c available at each step in the decoding process, 
when generating the hidden states in the deocoder

and while producing the generated output.
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in the decoding process by adding it as a parameter to the computation of the current
hidden state.

hd
t = g(ŷt�1,hd

t�1,c)

A common approach to the calculation of the output layer y is to base it solely
on this newly computed hidden state. While this cleanly separates the underlying
recurrence from the output generation task, it makes it difficult to keep track of what
has already been generated and what hasn’t. A alternative approach is to condition
the output on both the newly generated hidden state, the output generated at the
previous state, and the encoder context.

yt = softmax(ŷt�1,zt ,c)

Finally, as shown earlier, the output y at each time consists of a softmax computa-
tion over the set of possible outputs (the vocabulary in the case of language models).
What one does with this distribution is task-dependent, but it is critical since the re-
currence depends on choosing a particular output, ŷ, from the softmax to condition
the next step in decoding. We’ve already seen several of the possible options for this.
For neural generation, where we are trying to generate novel outputs, we can sim-
ply sample from the softmax distribution. However, for applications like MT where
we’re looking for a specific output sequence, random sampling isn’t appropriate and
would likely lead to some strange output. An alternative is to choose the most likely
output at each time step by taking the argmax over the softmax output:

ŷ = argmaxP(yi|y<i)

This is easy to implement but as we’ve seen several times with sequence labeling,
independently choosing the argmax over a sequence is not a reliable way of arriving
at a good output since it doesn’t guarantee that the individual choices being made
make sense together and combine into a coherent whole. With sequence labeling we
addressed this with a CRF-layer over the output token types combined with a Viterbi-
style dynamic programming search. Unfortunately, this approach is not viable here
since the dynamic programming invariant doesn’t hold.

Beam Search

A viable alternative is to view the decoding problem as a heuristic state-space search
and systematically explore the space of possible outputs. The key to such an ap-
proach is controlling the exponential growth of the search space. To accomplish
this, we’ll use a technique called beam search. Beam search operates by combin-Beam Search
ing a breadth-first-search strategy with a heuristic filter that scores each option and
prunes the search space to stay within a fixed-size memory footprint, called the beam
width.

At the first step of decoding, we select the B-best options from the softmax output
y, where B is the size of the beam. Each option is scored with its corresponding
probability from the softmax output of the decoder. These initial outputs constitute
the search frontier. We’ll refer to the sequence of partial outputs generated along
these search paths as hypotheses.

At subsequent steps, each hypothesis on the frontier is extended incrementally
by being passed to distinct decoders, which again generate a softmax over the entire
vocabulary. To provide the necessary inputs for the decoders, each hypothesis must
include not only the words generated thus far but also the context vector, and the
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the next step in decoding. We’ve already seen several of the possible options for this.
For neural generation, where we are trying to generate novel outputs, we can sim-
ply sample from the softmax distribution. However, for applications like MT where
we’re looking for a specific output sequence, random sampling isn’t appropriate and
would likely lead to some strange output. An alternative is to choose the most likely
output at each time step by taking the argmax over the softmax output:
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width.
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y, where B is the size of the beam. Each option is scored with its corresponding
probability from the softmax output of the decoder. These initial outputs constitute
the search frontier. We’ll refer to the sequence of partial outputs generated along
these search paths as hypotheses.

At subsequent steps, each hypothesis on the frontier is extended incrementally
by being passed to distinct decoders, which again generate a softmax over the entire
vocabulary. To provide the necessary inputs for the decoders, each hypothesis must
include not only the words generated thus far but also the context vector, and the



Choosing the best output
For neural generation, where we are trying to generate novel outputs, 
we can simply sample from the softmax distribution. 

In MT where we’re looking for a specific output sequence, sampling 
isn’t appropriate and would likely lead to some strange output. 

Instead we choose the most likely output at each time step by taking 
the argmax over the softmax output 
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Beam search
In order to systematically explore the space of possible outputs for 
applications like MT, we need to control the exponential growth of the 
search space. 

Beam search: combining a breadth-first-search strategy with a heuristic 
filter that scores each option and prunes the search space to stay within 
a fixed-size memory footprint, called the beam width



Beam search



Attention
Weaknesses of the context vector:

• Only directly available at the beginning of the process and its influence 
will wane as the output sequence is generated

• Context vector is a function (e.g. last, average, max, concatenation) of 
the hidden states of the encoder. This approach loses useful information 
about each of the individual encoder states

Potential solution: attention mechanism



Attention
• Replace the static context vector with one that is dynamically derived 
from the encoder hidden states at each point during decoding

• A new context vector is generated at each decoding step and takes all 
encoder hidden states into derivation

• This context vector is available to decoder hidden state calculations
ℎ!" = 𝑔 $𝑦!#$, ℎ!#$" , 𝑐!



Attention
•To calculate 𝑐!, first find relevance of each encoder hidden state to the 
decoder state. Call it 𝑠𝑐𝑜𝑟𝑒(ℎ!#$" , ℎ%&) for each encoder state 𝑗

•The 𝑠𝑐𝑜𝑟𝑒 can simply be dot product,
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10.3 Attention

To overcome the deficiencies of these simple approaches to context, we’ll need a
mechanism that can take the entire encoder context into account, that dynamically
updates during the course of decoding, and that can be embodied in a fixed-size
vector. Taken together, we’ll refer such an approach as an attention mechanism.attention

mechanism
Our first step is to replace the static context vector with one that is dynamically

derived from the encoder hidden states at each point during decoding. This context
vector, ci, is generated anew with each decoding step i and takes all of the encoder
hidden states into account in its derivation. We then make this context available
during decoding by conditioning the computation of the current decoder state on it,
along with the prior hidden state and the previous output generated by the decoder.

hd
i = g(ŷi�1,hd

i�1,ci)

The first step in computing ci is to compute a vector of scores that capture the
relevance of each encoder hidden state to the decoder state captured in hd

i�1. That is,
at each state i during decoding we’ll compute score(hd

i�1,h
e
j) for each encoder state

j.
For now, let’s assume that this score provides us with a measure of how similar

the decoder hidden state is to each encoder hidden state. To implement this similarity
score, let’s begin with the straightforward approach introduced in Chapter 6 of using
the dot product between vectors.

score(hd
i�1,h

e
j) = hd

i�1 ·he
j

The result of the dot product is a scalar that reflects the degree of similarity between
the two vectors. And the vector of scores over all the encoder hidden states gives us
the relevance of each encoder state to the current step of the decoder.

While the simple dot product can be effective, it is a static measure that does not
facilitate adaptation during the course of training to fit the characteristics of given
applications. A more robust similarity score can be obtained by parameterizing the
score with its own set of weights, Ws.

score(hd
i�1,h

e
j) = hd

t�1Wshe
j

By introducing Ws to the score, we are giving the network the ability to learn which
aspects of similarity between the decoder and encoder states are important to the
current application.

To make use of these scores, we’ll next normalize them with a softmax to create
a vector of weights, ai j, that tells us the proportional relevance of each encoder
hidden state j to the current decoder state, i.

ai j = softmax(score(hd
i�1,h

e
j) 8 j 2 e)

=
exp(score(hd

i�1,h
e
j)P

k exp(score(hd
i�1,h

e
k))

Finally, given the distribution in a , we can compute a fixed-length context vector for
the current decoder state by taking a weighted average over all the encoder hidden
states.

ci =
X

j

ai jhe
j (10.1)



Attention
•The score can also be parameterized with weights

•Normalize them with a softmax to create a vector of weights 𝛼!,% that 
tells us the proportional relevance of each encoder hidden state 𝑗 to the 
current decoder state 𝑖

𝛼!,% = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑠𝑐𝑜𝑟𝑒 ℎ!#$" , ℎ%& ∀𝑗 ∈ 𝑒)

• Finally, context vector is the weighted average of encoder hidden states

𝑐! =8
%

𝛼!,% ℎ%&

10.3 • ATTENTION 9
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Attention mechanism



Applications of Encoder-
Decoder Networks
• Text summarization
• Text simplification
• Question answering

• Image captioning
• And more. What do those tasks have in common?



Neural Machine 
Translation
SLIDES FROM GRAHAM NEUBIG, CMU

NEURAL MACHINE TRANSLATION AND

SEQUENCE-TO-SEQUENCE MODELS: A TUTORIAL

https://arxiv.org/abs/1703.01619
https://arxiv.org/abs/1703.01619


Machine Translation
Translation from one language to another

I'm giving a talk at University of Pennsylvania

ペンシルベニア大学で講演をしています。



Long-distance Dependencies
Agreement in number, gender, etc.

1. He does not have very much confidence in himself.
2. She does not have very much confidence in herself.

Selectional preference:

1. The reign has lasted as long as the life of the queen.

2. The rain has lasted as long as the life of the clouds.



Recurrent Neural Networks
Tools to “remember” information

Feed-forward NN

lookup

transform

predict

context

label

Recurrent NN

lookup

transform

predict

context

label



Unrolling in Time
What does processing a sequence look like?

I hate this movie

RNN RNN RNN RNN

predict

label

predict

label

predict

label

predict

label



Training RNNs
I hate this movie

RNN RNN RNN RNN

predict

prediction 1

predict predict predict

prediction 2 prediction 3 prediction 4

label 1 label 2 label 3 label 4

loss 1 loss 2 loss 3 loss 4

sum total loss



Parameter Tying
Parameters are shared! Derivatives are accumulated.

I hate this movie

RNN RNN RNN RNN

predict

prediction 1

predict predict predict

loss 1 loss 2 loss 3 loss 4

prediction 2 prediction 3 prediction 4

label 1 label 2 label 3 label 4

sum total loss



What Can RNNs Do?
Represent a sentence
◦ Read whole sentence, make a prediction

Represent a context within a sentence
◦ Read context up until that point



Representing Sentences
I hate this movie

RNN RNN RNN RNN

predict

prediction

Sentence classification

Conditioned generation

Retrieval



Representing Contexts
I hate this movie

RNN RNN RNN RNN

predict

label

predict

label

predict

label

predict

label

Tagging

Language Modeling

Calculating Representations for Parsing, etc.



Language Models
Language models are generative models of text

s ~ P(x)

Text Credit: Max Deutsch (https://medium.com/deep-writing/)

“The Malfoys!” said Hermione.

Harry was watching him. He looked like Madame Maxime. When she strode up 
the wrong staircase to visit himself.

“I’m afraid I’ve definitely been suspended from power, no chance — indeed?” 
said Snape. He put his head back behind them and read groups as they crossed a 
corner and fluttered down onto their ink lamp, and picked up his spoon. The 
doorbell rang. It was a lot cleaner down in London.

https://medium.com/deep-writing/


Calculating the Probability of a 
Sentence

Next Word Context



Language Models with RNNs

At each step, calculate probability of next word

RNN RNN RNN RNN

moviethishateI

predict

hate

predict

this

predict

movie

predict

</s>

RNN

<s>

predict

I



Bi-directional RNNs
A simple extension, run the RNN in both directions

I hate this movie

RNN RNN RNN RNN

RNN RNN RNN RNN

concat concat concat concat

softmax

PRN

softmax

VB

softmax

DET

softmax

NN



Conditional Language 
Modeling for
Machine Translation



Conditional Language Models
Not just generate text, generate text according to some specification

Input X Output Y (Text)

English Japanese

Task

Translation

NL Generation

Document Short Description Summarization

Utterance Response Response Generation

Image Text Image Captioning

Speech Transcript Speech Recognition

Structured Data NL Description



Conditional Language Models

Added Context!



One type of Conditional LM

Sutskever et al. 2014

LSTM LSTM LSTM LSTM LSTM

</s>

LSTM LSTM LSTM LSTM

argmax argmax argmax argmax

</s>
argmax

I hate this movie

kono eiga ga kirai

I hate this movie

Encoder

Decoder



How to pass the hidden state?
Initialize decoder w/ encoder (Sutskever et al. 2014)

encoder decoder

Transform (can be different dimensions)

encoder decodertransform

Input at every time step (Kalchbrenner & Blunsom 2013)

encoder

decoder decoder decoder



Training Conditional LMs
Get parallel corpus of inputs and outputs

Maximize likelihood

Standard corpora for MT:

◦ WMT Conference on Machine Translation runs an 
evaluation every year with large-scale (e.g. 10M 
sentence) datasets

◦ Smaller datasets, e.g. 200k sentence TED talks from 
IWSLT, can be more conducive to experimentation



The Generation Problem
We have a model of P(Y|X), how do we use it to generate a 
sentence?

Two methods:
◦ Sampling: Try to generate a random sentence according to 

the probability distribution.
◦ Argmax: Try to generate the sentence with the highest

probability.



Ancestral Sampling
Randomly generate words one-by-one.

An exact method for sampling from P(X), no further work needed.

while yj-1 != “</s>”:
yj ~ P(yj | X, y1, …, yj-1)



Greedy Search
One by one, pick the single highest-probability word

Not exact, which causes real problems:

1. Will often generate the “easy” words first

2. Will prefer multiple common words to one rare word

while yj-1 != “</s>”:
yj = argmax P(yj | X, y1, …, yj-1)



Beam Search
Instead of picking one high-probability word, maintain several 
paths



How do we 
Evaluate the 
Quality of MT?



Evaluating 
MT Quality

• Want to rank systems
• Want to evaluate incremental 

changes
• What to make scientific claims

Why do we want to do it?

• “Back translation”
• The vodka is not good

How not to do it



Human 
Evaluation of 
MT v.  
Automatic 
Evaluation

• Ultimately what we're 
interested in, but

• Very time consuming
• Not re-usable 

Human evaluation is

• Cheap and reusable, but
• Not necessarily reliable

Automatic evaluation is



Manual Evaluation



Goals for 
Automatic 
Evaluation

No cost evaluation for 
incremental changes
Ability to rank systems
Ability to identify which 
sentences we're doing 
poorly on,  and categorize 
errors
Correlation with human 
judgments
Interpretability of the 
score



Methodology

Comparison against 
reference translations

Intuition: closer we get 
to human translations, 
the better we're doing

Could use WER like in 
speech recognition?



Word Error 
Rate

Levenshtein Distance (also known as 
"edit distance")

Minimum number of insertions, 
substitutions, and deletions needed 
to transform one string into another

Useful measure in speech 
recognition

• This shows how easy it is to recognize 
speech

• This shows how easy it is to wreck a nice 
beach



Problems with WER

Unlike speech recognition 
we don't have the 

assumption of exact 
match against the 

reference or linearity

In MT there can be many 
possible (and equally 

valid) ways of translating 
a sentence, and phrases 

can be rearranged.



/

Solutions

Compare against 
lots of test 
sentences

1
Use multiple 
reference 
translations for 
each test sentence

2
Look for phrase / 
n-gram matches, 
allow movement

3



BLEU

BiLingual Evaluation 
Understudy

Uses multiple reference 
translations

Look for n-grams that occur 
anywhere in the sentence



Multiple references

Ref 1 Orejuela appeared calm as he was led to the American 
plane which will take him to Miami, Florida.

Ref 2 Orejuela appeared calm while being escorted to the 
plane that would take him to Miami, Florida.

Ref 3
Orejuela appeared calm as he was being led to the 
American plane that was to carry him to Miami in 
Florida.

Ref 4
Orejuela seemed quite calm as he was being led to the 
American plane that would take him to Miami in 
Florida.



n-gram precision
B L E U  M O D I F I E S  T H I S  P R E C I S I O N  T O  E L I M I N AT E  R E P E T I T I O N S  T H AT  O C C U R A C R O S S  
S E N T E N C E S .



Multiple references 

Ref 1 Orejuela appeared calm as he was led to the American 
plane which will take him to Miami, Florida.

Ref 2 Orejuela appeared calm while being escorted to the 
plane that would take him to Miami, Florida.

Ref 3
Orejuela appeared calm as he was being led to the 
American plane that was to carry him to Miami in 
Florida.

Ref 4
Orejuela seemed quite calm as he was being led to the 
American plane that would take him in Florida. to 
Miami 

“to Miami” can only be counted as correct once



Ref 1 Orejuela appeared calm as he was led to the American plane 
which will take him to Miami, Florida.

Ref 2 Orejuela appeared calm while being escorted to the plane that 
would take him to Miami, Florida.

Ref 3 Orejuela appeared calm as he was being led to the American 
plane that was to carry him to Miami in Florida.

Ref 4 Orejuela seemed quite calm as he was being led to the American 
plane that would take him to Miami in Florida.

Hyp appeared calm when he was taken to the American plane, which 
will to Miami, Florida.



American, Florida, Miami, Orejuela, 
appeared, as, being, calm, carry, escorted, he, 
him, in, led, plane, quite, seemed, take, that, 
the, to, to, to, was , was, which, while, will, 
would, ,, .

Hyp appeared calm when he was taken to the American
plane , which will to Miami , Florida .

1-gram precision = 15/18 



American plane, Florida ., Miami ,, Miami in, 
Orejuela appeared, Orejuela seemed, appeared 
calm, as he, being escorted, being led, calm as, 
calm while, carry him, escorted to, he was, him 
to, in Florida, led to, plane that, plane which, 
quite calm, seemed quite, take him, that was, 
that would, the American, the plane, to Miami, 
to carry, to the, was being, was led, was to, 
which will, while being, will take, would take, , 
Florida

Hyp appeared calm when he was taken to the American 
plane , which will to Miami , Florida .

2-gram precision = 10/17 



2-gram precision = 10/17 = .59 
1-gram precision = 15/18 = .83 

4-gram precision = 3/15  = .20
3-gram precision = 5/16  = .31

Hyp appeared calm when he was taken to the American 
plane, which will to Miami, Florida.

(0.83 * 0.59 * 0.31 * 0.2)^(1/4) = 0.417
or equivalently 

exp(ln .83 + ln .59 + ln .31 + ln .2/4) = 0.417

• Geometric average

n-gram precision



Ref 1 Orejuela appeared calm as he was led to the American plane 
which will take him to Miami, Florida.

Ref 2 Orejuela appeared calm while being escorted to the plane that 
would take him to Miami, Florida.

Ref 3 Orejuela appeared calm as he was being led to the American 
plane that was to carry him to Miami in Florida.

Ref 4 Orejuela seemed quite calm as he was being led to the American 
plane that would take him to Miami in Florida.

Hyp to the American plane



2-gram precision = 3/3 = 1.0 
1-gram precision = 4/4 = 1.0 

4-gram precision = 1/1  = 1.0
3-gram precision = 2/2  = 1.0

Hyp to the American plane

exp(ln 1 + ln 1 + ln 1 + ln 1) = 1

Is this better?



Brevity 
Penalty

c is the length of the corpus of 
hypothesis translations
r is the effective reference corpus 
length
The effective reference corpus length is 
the sum of the single reference 
translation from each set that is closest 
to the hypothesis translation.
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Brevity Penalty 
MT is Longer



BP = exp(1-(20/18)) = 0.89

BP = exp(1-(20/4)) = 0.02

Hyp to the American plane

Hyp appeared calm when he was taken to the American plane, which 
will to Miami, Florida.

Ref 1 Orejuela appeared calm as he was led to the American plane 
which will take him to Miami, Florida.

Ref 1 Orejuela appeared calm as he was led to the American plane 
which will take him to Miami, Florida.

r = 20

r = 20

c = 18

c = 4



BLEU Geometric average of the n-
gram precisions
Optionally weight them with 
w
Multiplied by the brevity 
penalty 



exp(1-(20/18)) * exp((ln .83 + ln .59 + ln .31 + ln .2)/4) = 
0.374

exp(1-(20/4)) * exp((ln 1 + ln 1 + ln 1 + ln 1)/4) 
= 0.018

Hyp to the American plane

Hyp appeared calm when he was taken to the American plane, which 
will to Miami, Florida.

BLEU



Problems 
with BLEU

Synonyms and paraphrases are 
only handled if they are in the set 
of multiple reference translations

The scores for words are equally 
weighted so missing out on 
content-bearing material brings no 
additional penalty.

The brevity penalty is a stop-gap 
measure to compensate for the 
fairly serious problem of not being 
able to calculate recall.



More Metrics

WER - word error rate
PI-WER - position independent WER
METEOR - Metric for Evaluation of 
Translation with Explicit ORdering
TERp - Translation Edit Rate plus



Attention



Sentence Representations

You can't cram the 
meaning of a whole 

%&!$# sentence into a 
single $&!#* vector!



Sentence Representations
But what if we could use multiple vectors, based on the length of the 
sentence?

this is an example

this is an example



Basic Idea
Encode each word in the sentence into a vector

When decoding, perform a linear combination of these vectors, 
weighted by “attention weights”

Use this combination in picking the next word

Neural Machine Translation by Jointly Learning to Align and Translate
by Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio, 2015



Encoder Bi-RNNs
A simple extension, run the RNN in both directions

I hate this movie

RNN RNN RNN RNN

RNN RNN RNN RNN

concat concat concat concat



Calculating Attention (1)
Use “query” vector (decoder state) and “key” vectors (all encoder states)
For each query-key pair, calculate weight
Normalize to add to one using softmax

kono eiga ga kirai
Key

Vectors

I hate

Query Vector

a1=2.1 a2=-0.1 a3=0.3 a4=-1.0

softmax

α1=0.76 α2=0.08 α3=0.13 α4=0.03



Calculating Attention (2)
Combine together value vectors (usually encoder states, like 
key vectors) by taking the weighted sum

kono eiga ga kirai
Value

Vectors

α1=0.76 α2=0.08 α3=0.13 α4=0.03
* * * *

Use this in any part of the model you like



A Graphical Example



Attention Score 
Functions (1)
q is the query and k is the key

Multi-layer Perceptron (Bahdanau et al. 2015)

◦ Flexible, often very good with large data

Bilinear (Luong et al. 2015)



Attention Score 
Functions (2)
Dot Product (Luong et al. 2015)

◦ No parameters! But requires sizes to be the same.

Scaled Dot Product (Vaswani et al. 2017)

◦ Problem: scale of dot product increases as dimensions get 
larger

◦ Fix: scale by size of the vector



Extensions to Attention



Intra-Attention / Self 
Attention
(Cheng et al. 2016)

Each element in the sentence attends to other elements → context 
sensitive encodings!

this is an example

this

is

an

example



Multi-headed Attention
Idea: multiple attention “heads” focus on different parts of the sentence

• Or multiple independently 
learned heads (Vaswani et 
al. 2017)

• e.g. Different heads 
for “copy” vs regular 
(Allamanis et al. 
2016)

• Or one head for every hidden node! (Choi et al. 2018)



Attending to Previously 
Generated Things

In language modeling, attend to the previous words 
(Merity et al. 2016)

In translation, attend to either input or previous 
output (Vaswani et al. 2017)



An Interesting Case 
Study:
“Attention is All You 
Need”
(Vaswani et al. 2017)



A sequence-to-
sequence model 
based entirely on 
attention

Also have attention 
on the output side! 
Calculate probability 
of next word by 
attention over 
previous words.

Fast: only matrix 
multiplications

Summary of the 
“Transformer"
(Vaswani et al. 2017)



Attention Tricks
Self Attention: Each layer combines words with others

Multi-headed Attention: 8 attention heads function independently

Normalized Dot-product Attention: Remove bias in dot product 
when using large networks

Positional Encodings: Make sure that even if we don’t have RNN, 
can still distinguish positions



Training Tricks
Layer Normalization: Help ensure that layers remain in reasonable 
range

Specialized Training Schedule: Adjust default learning rate of the 
Adam optimizer

Label Smoothing: Insert some uncertainty in the training process

Masking for Efficient Training



Masking for Training
We want to perform training in as few operations as 
possible using big matrix multiplies

We can do so by “masking” the results for the output

kono eiga ga kirai I hate this movie </s>



How to Get Started?



Getting Started
Find training data, (e.g. TED talks from IWSLT), in your favorite language

Download a toolkit (e.g. OpenNMT, fairseq, Sockeye, xnmt) and run it on 
the data

Calculate the BLEU score and look at the results

Think of what's going right, what's going wrong!



Questions?

To Learn More:
"Neural Machine Translation and
Sequence-to-sequence Models: A Tutorial"


