
TEXT GENERATION 
WITH 

NEURAL NETWORKS
DAPHNE IPPOLITO

1



OUTLINE

• Neural language model framework 

• LM Architectures 

• Recurrent neural networks 

• Transformers 

• Decoding Strategies 

• Transformers for natural language understanding 

• BERT 

• T5

2



OUTLINE

3

• Neural language model framework 

• LM Architectures 

• Recurrent neural networks 

• Transformers 

• Decoding Strategies 

• Transformers for natural language understanding 

• BERT 

• T5



WHAT IS A LANGUAGE MODEL?

A language model outputs the probability distribution over the next word given the 
previous words in a string. 

Historically, language models were statistical. If the word “apple” follows the word 
“the” 2% of the times that “the” occurs in the text corpus, then P(“apple” | 
“the”) = 0.02. 

More recently, we use neural language models, which can condition on much longer 
sequences, ie. P(“apple" | “I was about to eat the”). They are also able 
to generalize to sequences which are not in the training set.
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WHAT IS A LANGUAGE MODEL?

Using the chain rule, we can refer to the probability of a sequence of words as the 
product of the conditional probability of each word given the words that precede it. 

P([“I”, “eat”, “the”, “apple”]) = 
P(“apple” | [“I”, “eat”, “the”]) * P(“the” | [“I”, “eat”]) * P(“eat” | [“I”]) * P(“I”])

This is helpful since language models output .P(yt |y1:t−1)
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A REMINDER ABOUT THE CHAIN RULE 



UNCONDITIONED VS CONDITIONED
NEURAL LANGUAGE MODELS
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Neural language models can either be designed to just predict the next word given the previous ones, or they 
can be designed to predict the next word given the previous ones and some additional conditioning sequence.

Unconditioned:  
At each step the LM predicts:  

Tasks that are usually unconditioned: 
• Story generation 
• News article generation

P(Y)
P(yt |y1:t−1)

Conditioned:  
At each step the LM predicts:  

Tasks that are usually conditioned: 
• Machine translation  
• Abstractive text summarization 
• Simplification

P(Y |X)
P(yt |y1:t−1, x1:T)



UNCONDITIONED VS CONDITIONED
NEURAL LANGUAGE MODELS

UncondiWioned LangXage Model

CondiWioned LangXage Model

DecodeU

DecodeUEncodeU

7

Unconditioned neural language models only have a decoder. Conditioned ones have an 
encoder and a decoder.



UNCONDITIONED VS CONDITIONED
NEURAL LANGUAGE MODELS
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Theoretically, any task designed for a decoder-only architecture can be turned into 
one for an encoder-decoder architecture, and vice-versa.

Unconditioned (decoder-only) examples 

• Once upon a time there lived a beautiful ogre 
who ...

• [tag_Title] Truck Overturns on Highway Spilling 
Maple Syrup [tag_Body] The truck was ...

• [source] The hippopotamus ate my homework. 
[target] ...

• [complex] The incensed hippopotamus consumed my 
assignment. [simple] ...

Conditioned (encoder-decoder) examples 

• Once upon a time there lived a beautiful ogre who 
➡ fell in love with...

• Truck Overturns on Highway Spilling Maple Syrup ➡ 
The truck was...

• The hippopotamus ate my homework. ➡ ...
 

• The incensed hippopotamus consumed my assignment. 
➡ The angry hippo ate my ...
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The first step of building a neural language model is 
constructing a vocabulary of valid tokens. 

Each token in the vocabulary is associated with a vector 
embedding, and these are concatenated into an embedding 
matrix.



NEURAL LANGUAGE MODELS
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The first step of building a neural language model is 
constructing a vocabulary of valid tokens. 

Each token in the vocabulary is associated with a vector 
embedding, and these are concatenated into an embedding 
matrix.

UncondiWioned LangXage Model

CondiWioned LangXage Model

DecodeU

DecodeUEncodeU



The encoder outputs a sequence of hidden states for each token 
in the source sequence. 

The decoder takes as input the hidden states from the encoder as well as 
the embeddings for the tokens seen so far in the target sequence.

NEURAL LANGUAGE MODELS
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11

DecRdeU
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242175
EPbed EPbed

ŷt



NEURAL LANGUAGE MODELS
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DecodeU

DecodeUEncodeU
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Ideally the predicted embedding  is close to the 
embedding of the true next word.

ŷt



NEURAL LANGUAGE MODELS

DecRdeU

Le KLSSRWaPe

242175
EPbed EPbed

ŷt

UncondiWioned LangXage Model

CondiWioned LangXage Model

DecodeU

DecodeUEncodeU

embedding 
matrix

Yocab si]e

=
logiWV

P(Yt = i |x1:T, y1:t−1) =
exp(Eŷt[i])

∑j exp(Eŷt[ j])

ŷt
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embedding 
matrix E

Ideally the predicted embedding  is close to the embedding of the true next 
word. 

We multiply the predicted embedding by our vocabulary embedding matrix to 
get a score for each vocabulary word. These scores are referred to as logits. 

It’s possible to turn the logits into probabilities.

ŷt



NEURAL LANGUAGE MODELS

DecRdeU
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DecodeUEncodeU
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embedding 
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Ideally the predicted embedding  is close to the embedding of the true next 
word. 

We multiply the predicted embedding by our vocabulary embedding matrix to 
get a score for each vocabulary word. These scores are referred to as logits. 

It’s possible to turn the logits into probabilities.

ŷt

Also called the 
softmax function



LOSS FUNCTION
NEURAL LANGUAGE MODELS

ℒ = −
T

∑
t=1

log P(Yt = i* |x1:T, y1:t−1)
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The index of the 
true th word in the 

target sequence.
t



LOSS FUNCTION
NEURAL LANGUAGE MODELS

ℒ = −
T

∑
t=1

log P(Yt = i* |x1:T, y1:t−1)
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The probability the language 
model assigns to the true th 
word in the target sequence.

t



LOSS FUNCTION
NEURAL LANGUAGE MODELS

ℒ = −
T

∑
t=1

log P(Yt = i* |x1:T, y1:t−1)

Recall: P(Yt = i |x1:T, y1:t−1) =
exp(Eŷt[i])

∑j exp(Eŷt[ j])

= −
T

∑
t=1

log
exp(Eŷt[i*])

∑j exp(Eŷt[ j])
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LOSS FUNCTION
NEURAL LANGUAGE MODELS

ℒ = −
T

∑
t=1

log P(Yt = i* |x1:T, y1:t−1)

Recall: P(Yt = i |x1:T, y1:t−1) =
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= −
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Yocab si]e

=
logiWV

ŷt

embedding 
matrix E

Score for word 
at index i*



LOSS FUNCTION
NEURAL LANGUAGE MODELS

ℒ = −
T

∑
t=1

log P(Yt = i* |x1:T, y1:t−1)

= −
T

∑
t=1

log
exp(Eŷt[i*])

∑j exp(Eŷt[ j])

= −
T

∑
t=1

Eŷt[i*]
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SAMPLING ALGORITHM
NEURAL LANGUAGE MODELS

UQcRQdLWLRQed LaQgXage MRdeO

CRQdLWLRQed LaQgXage MRdeO

VaPSOLQg
agRULWhP

VaPSOLQg
agRULWhPDecRdeU

chRVeQ ZRUd fRU
SRVLWLRQ t+1

chRVeQ ZRUd fRU
SRVLWLRQ t+1

DecRdeUEQcRdeU

Examples: 
• Argmax 
• Random sampling 
• Beam search
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At inference time, we need a sampling algorithm that selects a word given the predicted 
probability distribution. In theory, we want to choose words so that we maximize  or , 
but in practice this is intractable.

P(Y) P(Y |X)
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REFERENCED PAPER
RECURRENT NEURAL NETWORKS
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Yocab si]e

=
probabilities

RNN RNN ...

Decoder

softmax ( ) =

SINGLE LAYER DECODER ARCHITECTURE
RECURRENT NEURAL NETWORKS

The current hidden state is computed as a function of 
the previous hidden state and the embedding of the 
current word in the target sequence. 

 

The current hidden state is used to predict an 
embedding for the next word in the target sequence. 

 

This predicted embedding is used in the loss function:

ht = RNN(Wihyt + Whhht−1 + bh)

̂et = be + Wheht
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Yocab si]e

=
probabiliWieV

softmax ( ) =



Yocab si]e

=
probabilities

RNN RNN ...

Decoder

softmax ( ) =

SINGLE LAYER DECODER ARCHITECTURE
RECURRENT NEURAL NETWORKS

The current hidden state is computed as a function of 
the previous hidden state and the embedding of the 
current word in the target sequence. 

 

The current hidden state is used to predict an 
embedding for the next word in the target sequence. 

 

This predicted embedding is used in the loss function:

ht = RNN(Wihyt + Whhht−1 + bh)

̂et = be + Wheht
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Yocab si]e

=
probabiliWieV

softmax ( ) =

Usually the 
zero-vector



MULTI-LAYER DECODER ARCHITECTURE
RECURRENT NEURAL NETWORKS

Computing the next hidden state: 
For the first layer: 

 
For all subsequent layers: 

 

Predicting an embedding for the next token in the 
sequence: 

 

Each of the  and  are learned bias and weight matrices.

h1
t = RNN(Wih1yt + Wh1h1h1

t−1 + b1
h)

hl
t = RNN(Wihlyt + Whl−1hlhl−1

t + Whlhlhl
t−1 + bl

h)

̂et = be +
L

∑
l=1

Whlehl
t

b W
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RNN
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RNN
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WHAT IS THE “RNN” UNIT?
RECURRENT NEURAL NETWORK
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RNN ?



WHAT IS THE “RNN” UNIT?
RECURRENT NEURAL NETWORK
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LSTM stands for long short-term memory. 

An LSTM uses a gating concept to control how much 
each position in the hidden state vector can be 
updated at each step. 

LSTMs were originally designed as a mean to keep 
around information for longer in the hidden state as it 
gets repeatedly updated.

RNNLSTM



GENERATED TEXT CIRCA 2015
RECURRENT NEURAL NETWORKS
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GENERATED TEXT CIRCA 2015
RECURRENT NEURAL NETWORKS

29



VOCABULARY STRATEGIES
RECURRENT NEURAL NETWORKS

• Smaller vocab size 
• Few to no out-of-vocabulary 

tokens 

• Larger vocab size 
• Greater potential for out-of-

vocabulary tokens 
• Tokens have more semantic 

meaning

30



ENCODER-DECODER ARCHITECTURES
RECURRENT NEURAL NETWORKS

How do we connect the encoder with the decoder?

31

EQcRdeU

The hippo aWe m\ homeZork

1234220194320
EPbed EPbed EPbed EPbed EPbed

henc
1 henc

T

DecRdeU

Le KLSSRWaPe

242175
EPbed EPbed



ENCODER-DECODER ARCHITECTURES
RECURRENT NEURAL NETWORKS

Simplest approach: Use the final hidden 
state from the encoder to initialize the 
first hidden state of the decoder.

32

RNN RNN ...

EncRdeU

RNN RNN ...

DecodeU



ENCODER-DECODER ARCHITECTURES
RECURRENT NEURAL NETWORKS

Better approach: an attention mechanism 

33

[The, hippopotamus, ...

[L’, hippopotame, a, mangé, mes, devoirs]

When predicting the next English 
word, how much weight should the 
model put on each French word in 
the source sequence? 

Tr
an

sl
at

e 
Fr

 t
o 

En



Better approach: an attention mechanism 

[The, hippopotamus, ...

[L’, hippopotame, a, mangé, mes, devoirs]

ENCODER-DECODER ARCHITECTURES
RECURRENT NEURAL NETWORKS
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CRPSXWe a liQeaU cRPbiQaWiRQ Rf Whe eQcRdeU hiddeQ VWaWeV.

DecRdeU'V SUedicWiRQ aW SRViWiRQ t iV baVed RQ bRWh Whe cRQWe[W
YecWRU aQd Whe hiddeQ VWaWe RXWSXWWed b\ Whe RNN aW WhaW SRViWiRQ.Tr
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ENCODER-DECODER ARCHITECTURES
RECURRENT NEURAL NETWORKS

The th context vector is computed as . 

The context and encoder hidden state can be concatenated 
together and passed through a small feed-forward network which 
predicts an output embedding for position .  

t ct = Hencαt

i

̂et = fθ([ct; hdec
t ])

35

CRPSXWe a liQeaU cRPbiQaWiRQ Rf Whe eQcRdeU hiddeQ VWaWeV.

DecRdeU'V SUedicWiRQ aW SRViWiRQ t iV baVed RQ bRWh Whe cRQWe[W
YecWRU aQd Whe hiddeQ VWaWe RXWSXWWed b\ Whe RNN aW WhaW SRViWiRQ.



The th context vector is computed as . 

But how do we compute the ? 
 

There are a few different options for the attention score: 

 

t ct = Hencαt

αt

αt[i] = softmax(att_score(hdec
t , henc

i ))

att_score(hdec
t , henc

i ) =

hdec
t ⋅ henc

i dot product

hdec
t Wahenc

i bilinear function

w⊤
a1 tanh (Wa2[hdec

t , henc
i ]) MLP

ENCODER-DECODER ARCHITECTURES
RECURRENT NEURAL NETWORKS

36

Foreshadowing: This is 
the score that will be 
used in the Transformer.

CRPSXWe a liQeaU cRPbiQaWiRQ Rf Whe eQcRdeU hiddeQ VWaWeV.

DecRdeU'V SUedicWiRQ aW SRViWiRQ t iV baVed RQ bRWh Whe cRQWe[W
YecWRU aQd Whe hiddeQ VWaWe RXWSXWWed b\ Whe RNN aW WhaW SRViWiRQ.



LIMITATIONS
RECURRENT NEURAL NETWORKS

• Recurrent neural networks are slow to train. The computation at position t is 
dependent on first doing the computation at position t-1. 

• LSTMs were design to keep important information in the hidden state’s memory for 
longer (than simpler RNN units). However they are still not great at this. 
• If two tokens are K positions apart, there are K opportunities for knowledge of the first token to be erased 

from the hidden state before a prediction is made at the position of the second token. 

• To combat the forgetting, encoder networks are often bidirectional: one LSTM runs 
through the sequence left-to-right, and another runs through right-to-left. The 
outputs are concatenated. 
• This is a kludge rather than a real solution. 
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REFERENCED PAPER
TRANSFORMERS
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“ATTENTION IS ALL YOU NEED”
TRANSFORMERS

40

The Transformer is a non-recurrent non-
convolutional neural network designed for 
language understanding that introduces self-
attention in addition to encoder-decoder 
attention.



“ATTENTION IS ALL YOU NEED”
TRANSFORMERS

41

The Transformer: A feed-forward neural network 
designed for language understanding. 

Encoder



“ATTENTION IS ALL YOU NEED”
TRANSFORMERS

42

The Transformer: A feed-forward neural network 
designed for language understanding.

Decoder



“ATTENTION IS ALL YOU NEED”
TRANSFORMERS
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The Transformer: A feed-forward neural network 
designed for language understanding.

Yocab si]e

=
logiWV

P(Yt = i |x1:T, y1:t−1) =
exp(Eŷt[i])

∑j exp(Eŷt[ j])

ŷt

embedding 
matrix E



THE ATTENTION MECHANISM
TRANSFORMERS
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Multi-Head 
Attention



MULTI-HEAD ATTENTION
TRANSFORMERS
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Self-attention between a sequence 
of hidden states and that same 
sequence of hidden states.

Multi-Head 
Attention



MULTI-HEAD ATTENTION
TRANSFORMERS
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Encoder-decoder attention, like what has 
been standard in recurrent seq2seq models.

Multi-Head 
Attention



THE ATTENTION MECHANISM
TRANSFORMERS
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Multi-Head 
Attention

Scaled Dot-Product Attention



The scaled-dot product attention mechanism is almost 
identical to the one we learned about in the previous 
section. However, we’ll reformulate it in terms of matrix 
multiplications. 

 

 

 

 

The  in the denominator is there to prevent the dot 
product from getting too big.

The query: Q ∈ RT×dk

The key: K ∈ RT′ ×dk

The value: V ∈ RT×dv

Attention(Q, K, V) = softmax ( QKT

dk ) V

dk

SCALED DOT-PRODUCT ATTENTION
TRANSFORMERS
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Scaled Dot-Product 

This is the α vector from 
the previous formulation.



The scaled-dot product attention mechanism is almost 
identical to the one we learned about in the previous 
section. However, we’ll reformulate it in terms of matrix 
multiplications. 

 

 

 

 

The  in the denominator is there to prevent the dot 
product from getting too big.

The query: Q ∈ RT′ ×dk

The key: K ∈ RT×dk

The value: V ∈ RT×dv

Attention(Q, K, V) = softmax ( QKT

dk ) V

dk

SCALED DOT-PRODUCT ATTENTION
TRANSFORMERS
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Scaled Dot-Product 

This is the dot-product 
scoring function we saw 
in the previous section.



 

My attempt at an English translation: 
• For each of the vectors in Q, the query matrix, take a linear sum of the 

vectors in V, the value matrix. 
• The amount to weigh each vector in V is dependent on how “similar” 

that vector is to the query vector. 
• “Similar” is measured in terms of the dot product between the 

vectors. 

For encoder-decoder attention: 
Keys and values come from encoder’s final output. 
Queries come from the previous decoder layer’s outputs. 

For self-attention: 
Keys, queries, and values all come from the outputs of the previous 
layer.

Attention(Q, K, V) = softmax ( QKT

dk ) V

SCALED DOT-PRODUCT ATTENTION
TRANSFORMERS
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Scaled Dot-Product 



 

 

 

Instead of operating on  directly, the 
mechanism projects each input into a smaller 
dimension. This is done  times. The attention 
operation is performed on each of these “heads,” 
and the results are concatenated. 

Multi-head attention allows the model to jointly 
attend to information from different representation 
subspaces at different positions. 

Attention(Q, K, V) = softmax ( QKT

dk ) V

MultiHeadAtt(Q, K, V) = Concat(head1, . . . , headh)WO

where headi = Attention(QWQ
i , KWK

i , VWV
i )

Q, K, and V

h

MULTI-HEAD ATTENTION
TRANSFORMERS
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Multi-Head 
Attention



MULTI-HEAD ATTENTION
TRANSFORMERS
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Multi-Head 
Attention

Input-Input Layer5

The
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,
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application
should
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-
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missing
,
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.
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Law
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but
its

application
should

be
just
-

this
is

what
we
are

missing
,
in
my

opinion
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Two different self-attention heads:



The input into the encoder looks like: 

INPUTS TO THE ENCODER
TRANSFORMERS
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= token embeddings + position embeddings

+
Position Embeddings: Token Embeddings:



THE ENCODER
TRANSFORMERS
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= MultiHeadAtt( , , )Henc
i Henc

i Henc
i

Multi-Head
Attention



THE ENCODER
TRANSFORMERS

55

= MultiHeadAtt( , , )Henc
i Henc

i Henc
i

Multi-Head
Attention

Add & Norm = LayerNorm(                    + ) Henc
i

Multi-Head
Attention



THE ENCODER
TRANSFORMERS
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= MultiHeadAtt( , , )Henc
i Henc

i Henc
i

Multi-Head
Attention

Add & Norm = LayerNorm(                    + ) Henc
i

Multi-Head
Attention

=                     max(0, W1 + b1)W2 + b2
Feed

Forward Add & Norm

Feed
Forward <=>



THE ENCODER
TRANSFORMERS
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= MultiHeadAtt( , , )Henc
i Henc

i Henc
i

Multi-Head
Attention

Add & Norm = LayerNorm(                    + )Henc
i

Multi-Head
Attention

=                     max(0, W1 + b1)W2 + b2
Feed

Forward Add & Norm

Add & Norm (2) = LayerNorm(                    + )Henc
i

Feed
Forward

=Henc
i+1 Add & Norm (2)



THE DECODER
TRANSFORMERS
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= token embeddings + position embeddings

+



THE DECODER
TRANSFORMERS
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= MaskedMultiHeadAtt( , , )Hdec
i Hdec

i Hdec
i

Masked Multi-
Head Attention



THE DECODER
TRANSFORMERS
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= MaskedMultiHeadAtt( , , )Hdec
i Hdec

i Hdec
i

Masked Multi-
Head Attention

Add & Norm = LayerNorm(                    + )Hdec
i

Multi-Head
Attention



THE DECODER
TRANSFORMERS
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= MaskedMultiHeadAtt( , , )Hdec
i Hdec

i Hdec
i

Masked Multi-
Head Attention

Add & Norm Multi-Head
Attention

= MultiHeadAtt( , , )Henc
i Hdec

i Hdec
i

Enc-Dec Multi-
Head Attention

= LayerNorm(                    + )Hdec
i



THE DECODER
TRANSFORMERS
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= MaskedMultiHeadAtt( , , )Hdec
i Hdec

i Hdec
i

Masked Multi-
Head Attention

Add & Norm Multi-Head
Attention

Add & Norm (2)

Enc-Dec Multi-
Head Attention = MultiHeadAtt( , , )Hdec

i Henc
i Henc

i

Multi-Head
Attention

= LayerNorm(                    + )Hdec
i

= LayerNorm(                    +                     )Add & Norm



THE DECODER
TRANSFORMERS
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= MaskedMultiHeadAtt( , , )Hdec
i Hdec

i Hdec
i

Masked Multi-
Head Attention

Add & Norm Multi-Head
Attention

Add & Norm (2)

Enc-Dec Multi-
Head Attention = MultiHeadAtt( , , )Hdec

i Henc
i Henc

i

= LayerNorm(                    +                     )Multi-Head
Attention Add & Norm

Add & Norm (3) = LayerNorm(                    +                         )Feed
Forward

=Hdec
i+1

Add & Norm (3)

=                          max(0, W1 + b1)W2 + b2
Feed

Forward Add & Norm (2)

Add & Norm (2)

= LayerNorm(                    + )Hdec
i



GENERATED TEXT CIRCA 2018
TRANSFORMERS

64 Credit: Generating Wikipedia by Summarizing Long Sequences <https://arxiv.org/abs/1801.10198>

https://arxiv.org/abs/1801.10198


TAKEAWAYS

• Relative attention enables Transformer to generate longer sequences than it was trained 
on. 
• “Self-Attention with Relative Position Representations” <https://arxiv.org/abs/1803.02155> 

• Massive multi-GPU parallelization allows training giant language models (Microsoft just 
released one with 17 billion parameters). 
• https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/ 

• Distillation allows smaller models to be formed from bigger ones. 
• “Distilling Transformers into Simple Neural Networks with Unlabeled Transfer Data” <https://arxiv.org/abs/

1910.01769> 

• Lots of attempts to make sparse attention mechanisms work. 
• “Efficient Content-Based Sparse Attention with Routing Transformers” <https://openreview.net/forum?

id=B1gjs6EtDr>  

• “Reformer: The Efficient Transformer” <https://arxiv.org/abs/2001.04451>
65

EXTENSIONS TO TRANSFORMER ARCHITECTURE

https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/1910.01769
https://arxiv.org/abs/1910.01769
https://openreview.net/forum?id=B1gjs6EtDr
https://openreview.net/forum?id=B1gjs6EtDr
https://arxiv.org/abs/2001.04451
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OUTLINE
• Decoding Strategy Recap
• Automatic Detection of Generated Text
• Why is it difficult to answer the question “which decoding strategy is best”? 
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Recall that language models output a probability 
distribution P(Yt = i |y1:t−1)

Unconditioned Language Model

Conditioned Language Model

DecoderEncoderx1, ..., xT P(Yi+1=v)

y1, ..., yL

sampling
agorithm yL+1Decodery1, ..., yL P(Yi+1=v)

sampling
agorithm yL+1
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Recall that using the chain rule, we can refer to the probability of a sequence 
of words as the product of the conditional probability of each word given the 
words that precede it.

P([“I”, “eat”, “the”, “apple”]) = 
P(“apple” | [“I”, “eat”, “the”]) * P(“the” | [“I”, “eat”]) * P(“eat” | [“I”]) * P([“I”])

Actually maximizing  is intractable, so we try to approximate 
doing so when choosing a next token based on the  
outputted by the LM.

P(y1, …, yT)
P(Yt = i |y1:t−1)

However, we’re most interested in finding the most likely 
overall sequence  .P(y1, …, yT)
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How can we sample from  ?P(Yt = i |y1:t−1)

Example: 
Suppose our vocal consists of 4 words: 

 

We have primed our language “apple apple” and 
want to use it to make a predict for the 3rd word in 
the sequence. 

Our language model predicts: 
 

 
 

 

If we sample with argmax, what word would get 
selected?

𝒱 = {apple, banana, orange, plum}

P(Y3 = apple |Y1 = apple, Y2 = apple) = 0.05
P(Y3 = banana |Y1 = apple, Y2 = apple) = 0.65
P(Y3 = orange |Y1 = apple, Y2 = apple) = 0.2
P(Y3 = plum |Y1 = apple, Y2 = apple) = 0.1

Option 1: Take  arg max
i

P(Yt = i |y1:t−1)
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How can we sample from  ?P(Yt = i |y1:t−1)

Option 1: Take   

Option 2: Randomly sample from the distribution 
returned by the model.

arg max
i

P(Yt = i |y1:t−1) Example: 
Suppose our vocal consists of 4 words: 

 

We have primed our language “apple apple” and 
want to use it to make a predict for the 3rd word in 
the sequence. 

Our language model predicts: 
 

 
 

 

If we use random sampling, what is the probability 
that “plum” will get chosen as the third word?

𝒱 = {apple, banana, orange, plum}

P(Y3 = apple |Y1 = apple, Y2 = apple) = 0.05
P(Y3 = banana |Y1 = apple, Y2 = apple) = 0.65
P(Y3 = orange |Y1 = apple, Y2 = apple) = 0.2
P(Y3 = plum |Y1 = apple, Y2 = apple) = 0.1
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How can we sample from  ?P(Yt = i |y1:t−1)

Option 1: Take   

Option 2: Randomly sample from the distribution 
returned by the model.

arg max
i

P(Yt = i |y1:t−1)

Problem with Random Sampling 
Most tokens in the vocabulary get assigned very 
low probabilities but cumulatively, choosing any 
one of these low-probability tokens becomes 
pretty likely. In the example on the right, there is 
over a 17% chance of choosing a token with 

.P(Yt = i) ≤ 0.01

72



How do we sample from  ?P(Yt = i |y1:t−1)

Option 1: Take   

Option 2: Randomly sample from the distribution 
returned by the model.

arg max
i

P(Yt = i |y1:t−1)

Problem with Random Sampling 
Most tokens in the vocabulary get assigned very 
low probabilities but cumulatively, choosing any 
one of these low-probability tokens becomes 
pretty likely. In the example on the right, there is 
over a 17% chance of choosing a token with 

.P(Yt = i) ≤ 0.01

Solution: modify the distribution returned by the 
model to make the tokens In the tail less likely.
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How do we sample from  ?P(Yt = i |y1:t−1)

Option 1: Take   

Option 2: Randomly sample from the distribution 
returned by the model.

Option 3: Randomly sample with temperature.

arg max
i

P(Yt = i |y1:t−1)

P(Yt = i) =
exp(zi/T)

∑j exp(zj/T)
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How do we sample from  ?P(Yt = i |y1:t−1)

Option 1: Take   

Option 2: Randomly sample from the distribution 
returned by the model.

Option 3: Randomly sample with temperature.

arg max
i

P(Yt = i |y1:t−1)
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How do we sample from  ?P(Yt = i |y1:t−1)

Option 1: Take   

Option 2: Randomly sample from the distribution 
returned by the model.

Option 3: Randomly sample with temperature.

arg max
i

P(Yt = i |y1:t−1) Example: 
Suppose our vocal consists of 4 words: 

 

We have primed our language “apple apple” and 
want to use it to make a predict for the 3rd word in 
the sequence. 

Our language model predicts: 
 

 
 

 

What would the probability of selecting “banana” 
be if we use temperature sampling and set 

?

𝒱 = {apple, banana, orange, plum}

P(Y3 = apple |Y1 = apple, Y2 = apple) = 0.05
P(Y3 = banana |Y1 = apple, Y2 = apple) = 0.65
P(Y3 = orange |Y1 = apple, Y2 = apple) = 0.2
P(Y3 = plum |Y1 = apple, Y2 = apple) = 0.1

T = ∞

P(Yt = i) =
exp(zi /T )

∑j exp(zj /T )
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How do we sample from  ?P(Yt = i |y1:t−1)

Option 1: Take   

Option 2: Randomly sample from the distribution 
returned by the model.

Option 3: Randomly sample with temperature.

arg max
i

P(Yt = i |y1:t−1) Example: 
Suppose our vocal consists of 4 words: 

 

We have primed our language “apple apple” and 
want to use it to make a predict for the 3rd word in 
the sequence. 

Our language model predicts: 
 

 
 

 

What would the probability of selecting “banana” 
be if we use temperature sampling and set 

? 

Answer: 0.25

𝒱 = {apple, banana, orange, plum}

P(Y3 = apple |Y1 = apple, Y2 = apple) = 0.05
P(Y3 = banana |Y1 = apple, Y2 = apple) = 0.65
P(Y3 = orange |Y1 = apple, Y2 = apple) = 0.2
P(Y3 = plum |Y1 = apple, Y2 = apple) = 0.1

T = ∞

P(Yt = i) =
exp(zi /T )

∑j exp(zj /T )
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How do we sample from  ?P(Yt = i |y1:t−1)

Option 1: Take   

Option 2: Randomly sample from the distribution 
returned by the model.

Option 3: Randomly sample with temperature.

arg max
i

P(Yt = i |y1:t−1) Example: 
Suppose our vocal consists of 4 words: 

 

We have primed our language “apple apple” and 
want to use it to make a predict for the 3rd word in 
the sequence. 

Our language model predicts: 
 

 
 

 

What would the probability of selecting “banana” 
be if we use temperature sampling and set 

?

𝒱 = {apple, banana, orange, plum}

P(Y3 = apple |Y1 = apple, Y2 = apple) = 0.05
P(Y3 = banana |Y1 = apple, Y2 = apple) = 0.65
P(Y3 = orange |Y1 = apple, Y2 = apple) = 0.2
P(Y3 = plum |Y1 = apple, Y2 = apple) = 0.1

T = 0.00001

P(Yt = i) =
exp(zi /T )

∑j exp(zj /T )
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How do we sample from  ?P(Yt = i |y1:t−1)

Option 1: Take   

Option 2: Randomly sample from the distribution 
returned by the model.

Option 3: Randomly sample with temperature.

arg max
i

P(Yt = i |y1:t−1) Example: 
Suppose our vocal consists of 4 words: 

 

We have primed our language “apple apple” and 
want to use it to make a predict for the 3rd word in 
the sequence. 

Our language model predicts: 
 

 
 

 

What would the probability of selecting “banana” 
be if we use temperature sampling and set 

? 

Answer: 1.0

𝒱 = {apple, banana, orange, plum}

P(Y3 = apple |Y1 = apple, Y2 = apple) = 0.05
P(Y3 = banana |Y1 = apple, Y2 = apple) = 0.65
P(Y3 = orange |Y1 = apple, Y2 = apple) = 0.2
P(Y3 = plum |Y1 = apple, Y2 = apple) = 0.1

T = 0.00001

P(Yt = i) =
exp(zi /T )

∑j exp(zj /T )

As  approaches 0, random sampling with 
temperature looks more and more like 
argmax.

T
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How do we sample from  ?P(Yt = i |y1:t−1)

Option 1: Take   

Option 2: Randomly sample from the distribution 
returned by the model.

Option 3: Randomly sample with temperature.

Option 4: Introduce sparsity by reassigning all 
probability mass to the  most likely tokens. This is 
referred to as top-  sampling.

arg max
i

P(Yt = i |y1:t−1)

k
k

Usually  between 10 and 50 is selected.k
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How do we sample from  ?P(Yt = i |y1:t−1)

Option 1: Take   

Option 2: Randomly sample from the distribution 
returned by the model.

Option 3: Randomly sample with temperature.

Option 4: Introduce sparsity by reassigning all 
probability mass to the  most likely tokens. This is 
referred to as top-  sampling.

Option 5: Reassign all probability mass to the  most 
likely tokens, where  is automatically selected at 
every step. It is chosen such that the total probability 
of the  most likely tokens is no greater than a desired 
probability This is referred to as nucleus sampling.

arg max
i

P(Yt = i |y1:t−1)

k
k

kt
kt

kt
p .
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How do we sample from  ?P(Yt = i |y1:t−1)

Option 1: Take   

Option 2: Randomly sample from the distribution 
returned by the model.

Option 3: Randomly sample with temperature.

Option 4: Introduce sparsity by reassigning all 
probability mass to the  most likely tokens. This is 
referred to as top-  sampling.

Option 5: Reassign all probability mass to the  most 
likely tokens, where  is automatically selected at 
every step. It is chosen such that the total probability 
of the  most likely tokens is no greater than a desired 
probability This is referred to as nucleus sampling.

Option 6: Use some version of beam search.

arg max
i

P(Yt = i |y1:t−1)

k
k

kt
kt

kt
p .
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Beam search operates under the assumption 
that the best possible sequence to generate is 

the one with lowest overall sequence likelihood.

83



Greedy search methods do not always lead to the 
most likely output.

Figure 22: A search graph where greedy search fails.

Figure 23: An example of beam search with b = 2. Numbers next to arrows are log probabil-
ities for a single word logP (et|F, et�1

1 ), while numbers above nodes are log probabilities for
the entire hypothesis up until this point.
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Figure 22: A search graph where greedy search fails.

Figure 23: An example of beam search with b = 2. Numbers next to arrows are log probabil-
ities for a single word logP (et|F, et�1

1 ), while numbers above nodes are log probabilities for
the entire hypothesis up until this point.

48

Vocabulary = {a, b, </s>} 
Numbers above each edge are the transition 
probabilities  P(xt |x1:t−t)

Question: 
If we were to decode with argmax what 
would be the generated sequence? 
[a, b, </s>] 
[a, a, </s>] 
[b, b, </s>] 
[b, a, </s>]
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Greedy search methods do not always lead to the 
most likely output.

Figure 22: A search graph where greedy search fails.

Figure 23: An example of beam search with b = 2. Numbers next to arrows are log probabil-
ities for a single word logP (et|F, et�1

1 ), while numbers above nodes are log probabilities for
the entire hypothesis up until this point.
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Figure 22: A search graph where greedy search fails.

Figure 23: An example of beam search with b = 2. Numbers next to arrows are log probabil-
ities for a single word logP (et|F, et�1

1 ), while numbers above nodes are log probabilities for
the entire hypothesis up until this point.

48

Vocabulary = {a, b, </s>} 
Numbers above each edge are the transition 
probabilities  P(xt |x1:t−t)

Question: 
If we were to decode with argmax what 
would be the generated sequence? 
[a, b, </s>] 
[a, a, </s>] 
[b, b, </s>] 
[b, a, </s>]
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Greedy search methods do not always lead to the 
most likely output.

Figure 22: A search graph where greedy search fails.

Figure 23: An example of beam search with b = 2. Numbers next to arrows are log probabil-
ities for a single word logP (et|F, et�1

1 ), while numbers above nodes are log probabilities for
the entire hypothesis up until this point.
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Figure 22: A search graph where greedy search fails.

Figure 23: An example of beam search with b = 2. Numbers next to arrows are log probabil-
ities for a single word logP (et|F, et�1

1 ), while numbers above nodes are log probabilities for
the entire hypothesis up until this point.

48

Vocabulary = {a, b, </s>} 
Numbers above each edge are the transition 
probabilities  P(xt |x1:t−t)

Question: 
If we were to decode the sequence that 
optimally maximizes , what 
would be the generated sequence? 
[a, b, </s>] 
[a, a, </s>] 
[b, b, </s>] 
[b, a, </s>]

P(x1, …, xT)
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Greedy search methods do not always lead to the 
most likely output.

Figure 22: A search graph where greedy search fails.

Figure 23: An example of beam search with b = 2. Numbers next to arrows are log probabil-
ities for a single word logP (et|F, et�1

1 ), while numbers above nodes are log probabilities for
the entire hypothesis up until this point.
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Figure 22: A search graph where greedy search fails.

Figure 23: An example of beam search with b = 2. Numbers next to arrows are log probabil-
ities for a single word logP (et|F, et�1

1 ), while numbers above nodes are log probabilities for
the entire hypothesis up until this point.

48

Vocabulary = {a, b, </s>} 
Numbers above each edge are the transition 
probabilities  P(xt |x1:t−t)

Question: 
If we were to decode the sequence that 
optimally maximizes , what 
would be the generated sequence? 
[a, b, </s>] 
[a, a, </s>] 
[b, b, </s>] 
[b, a, </s>]

P(x1, …, xT)
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Beam search is an algorithm that explores multiple possible 
output sequences to find the overall most likely one.

Figure 22: A search graph where greedy search fails.
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Figure 23: An example of beam search with b = 2. Numbers next to arrows are log probabil-
ities for a single word logP (et|F, et�1

1 ), while numbers above nodes are log probabilities for
the entire hypothesis up until this point.

48

Vocabulary = {a, b, </s>} 
Numbers above the boxes are  

Numbers shown on edges are  
Recall that minimizing log probability is 
equivalent to maximizing probability. 

Suppose we use beam search with a beam 
size of 2.

log P(xt |x1:t−1)
log P(x1, …, xt)
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Beam search is an algorithm that explores multiple possible 
output sequences to find the overall most likely one.

Figure 22: A search graph where greedy search fails.
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Figure 23: An example of beam search with b = 2. Numbers next to arrows are log probabil-
ities for a single word logP (et|F, et�1

1 ), while numbers above nodes are log probabilities for
the entire hypothesis up until this point.

48

Vocabulary = {a, b, </s>} 
Numbers above the boxes are  

Numbers shown on edges are  
Recall that minimizing log probability is 
equivalent to maximizing probability. 

Suppose we use beam search with a beam 
size of 2.

log P(xt |x1:t−1)
log P(x1, …, xt)

Score each path and 
keep the top 2
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Beam search is an algorithm that explores multiple possible 
output sequences to find the overall most likely one.

Figure 22: A search graph where greedy search fails.
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Figure 23: An example of beam search with b = 2. Numbers next to arrows are log probabil-
ities for a single word logP (et|F, et�1

1 ), while numbers above nodes are log probabilities for
the entire hypothesis up until this point.

48

Vocabulary = {a, b, </s>} 
Numbers above the boxes are  

Numbers shown on edges are  
Recall that minimizing log probability is 
equivalent to maximizing probability. 

Suppose we use beam search with a beam 
size of 2.

log P(xt |x1:t−1)
log P(x1, …, xt)

Score each path and 
keep the top 2
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Beam search is an algorithm that explores multiple possible 
output sequences to find the overall most likely one.

Figure 22: A search graph where greedy search fails.
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Figure 23: An example of beam search with b = 2. Numbers next to arrows are log probabil-
ities for a single word logP (et|F, et�1

1 ), while numbers above nodes are log probabilities for
the entire hypothesis up until this point.
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Vocabulary = {a, b, </s>} 
Numbers above the boxes are  

Numbers shown on edges are  
Recall that minimizing log probability is 
equivalent to maximizing probability. 

Suppose we use beam search with a beam 
size of 2.

log P(xt |x1:t−1)
log P(x1, …, xt)

Score each path and 
keep the top 2
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Beam search is an algorithm that explores multiple possible 
output sequences to find the overall most likely one.

Figure 22: A search graph where greedy search fails.
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Figure 23: An example of beam search with b = 2. Numbers next to arrows are log probabil-
ities for a single word logP (et|F, et�1

1 ), while numbers above nodes are log probabilities for
the entire hypothesis up until this point.
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Vocabulary = {a, b, </s>} 
Numbers above the boxes are  

Numbers shown on edges are  
Recall that minimizing log probability is 
equivalent to maximizing probability. 

Suppose we use beam search with a beam 
size of 2.

log P(xt |x1:t−1)
log P(x1, …, xt)

Score each path and 
keep the top 2
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Problems with Beam Search
• It turns out for open-ended tasks like 

dialog or story generation, optimizing 
for the sequence with the highest 
possible  isn’t actually a 
great idea.

P(x1, …, xT)
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Problems with Beam Search
• It turns out for open-ended tasks like 

dialog or story generation, optimizing 
for the sequence with the highest 
possible  isn’t actually a 
great idea.
• Beam search generates text with a 

very different distribution of 
sequence likelihoods than human-
written text.

P(x1, …, xT)
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Problems with Beam Search
• It turns out for open-ended tasks like 

dialog or story generation, optimizing 
for the sequence with the highest 
possible  isn’t actually a 
great idea.
• Beam search generates text with a 

very different distribution of 
sequence likelihoods than human-
written text.

• When sequence likelihood is too 
high, humans rate the text as bad.

P(x1, …, xT)
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Diverse Beam Search Algorithms
• For a long time, people tried to improve beam to make it produce more diverse text. 

Methods included:
• Restrict the set of hypotheses that get considered at each step. 
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Diverse Beam Search Algorithms
• For a long time, people tried to improve beam to make it produce more diverse text. 

Methods included:
• Restrict the set of hypotheses that get considered at each step. 
• Incorporate diversity into the scoring function used to rank the current hypothesis set.
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Diverse Beam Search Algorithms
• For a long time, people tried to improve beam to make it produce more diverse text. 

Methods included:
• Restrict the set of hypotheses that get considered at each step. 
• Incorporate diversity into the scoring function used to rank the current hypothesis set. 
• Add noise to the model weights to encourage diversity
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When to use standard beam search: 
• Your domain is relatively closed (for 

example, machine translation)
• Your language model is not very good 

(you don’t trust the  it 
returns)

When to use one of the diverse beam 
search methods discussed in paper:
• Almost never, especially if your 

language model is good.

P(xt |x1:t−1)
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• Decoding Strategy Recap
• Automatic Detection of Generated Text
• Why is it difficult to answer the question “which decoding strategy is best”? 
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Why are we interested in systems that 
automatically detect generated text?

• Combat the propagation of fake text

• Improve training of text generation models (adversarial training)

• Evaluate the quality of generated text
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Method for Building a Detector
• Train a simple classifier on top of a bag-of-words representation of the text

• Compute a histogram of the token likelihoods  over all the tokens in 
the text, then train a simple classier on top of the histogram. http://gltr.io/ 

• Train a neural network to make a prediction given a text sequence
• Train from scratch

• Fine-tune for classification the same language model that was used for generating the 
samples

• Fine-tune some other pre-trained language model on the detection classification task.

P(xt |x1:t−1)
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Bidirectional Encoder Representations from Transformers (BERT)

Credit: http://jalammar.github.io/illustrated-bert/

http://jalammar.github.io/illustrated-bert/


Method
• I fine-tuned each classifier on ~200,000 excerpts of web text and ~200,000 

excerpts of text that were generated by GPT-2.
• Classifiers were trained to perform binary classification: predicting whether 

an excerpt was human-written or machine-generated (from GPT-2 XL).
• In total, I had 6 datasets, each with ~400,000 examples in it:

• Both with and without priming:

105

Examples with priming:
[start] Once upon ->  a time there was a beautiful ogre.
[start] Today ->  is going to be a great day.
Example without priming:
[start] -> Today it is going to rain cats and dogs.



Method
• I fine-tuned each classifier on ~200,000 excerpts of web text and ~200,000 

excerpts of text that were generated by GPT-2.
• Classifiers were trained to perform binary classification: predicting whether 

an excerpt was human-written or machine-generated.
• In total, I had 6 datasets, each with ~400,000 examples in it:

• Both with and without priming:
• One where the machine-generated text was sampled using top-k sampling with k=50

• One where the machine-generated text was sampled using nucleus sampling with 
p=0.96

• One where the   returned by the LM was used without modification (I’ll 
refer too this as p=1.0)

P(xt |x1:t−1)
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QUESTIONS OF INTEREST
➤ How does accuracy vary by 

sequence length?
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➤ How does accuracy vary by 
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for top-k than the other strategies?
➤ Why are accuracies well above 

random chance even for very short 
sequence lengths?
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For sequences of length 2, BERT 
gets 65% accuracy if there is some 
priming text, 90% accuracy if not.



CAN YOU DO IT?
Recall that top-  (with ) means that there are only 40 possible tokens the 
language model can generate in the first position.  

k k = 40

For each of the following excerpts, predict whether it’s human-written or machine-
generated, assuming top-  sampling was used.

1. "The cat"

k



CAN YOU DO IT?
Recall that top-  (with ) means that there are only 40 possible tokens the 
language model can generate in the first position.  

k k = 40

For each of the following excerpts, predict whether it’s human-written or machine-
generated, assuming top-  sampling was used.

1. "The cat"

2. “Felines are”

k



CAN YOU DO IT?

If we instead primed the language model with a bunch of text for it to continue, the 
detection task would be harder because there are more options for the next token.

P(next word | “I am”) vs P(next word | “The monstrous”) look very different.

For each of the following excerpts predict whether it’s human-written or machine-
generated.

BERT trained on generated text that had no priming would predict….
1. “The cat”
machine-generated
2. “Felines are”
 human-written
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QUESTIONS OF INTEREST
➤ How does accuracy vary by 

sequence length?
➤ Why are accuracies so much higher 

for top-k than the other strategies?
➤ Why are accuracies well above 

random chance even for very short 
sequence lengths?

➤ Why does priming the language 
model with some text make a big 
difference for top- ? 

➤ Why does top-  look so
     different?

k
k

Distribution of First Tokens in Generated Sequences

Even when using a word of priming, for  
top-  samples, the 1500 most common 
tokens form 100% of the first words in 
the generated sequences.

k



TOP-K IS NOT BAD, THE METHODS ARE JUST IMBALANCED
Recall that nucleus sampling chooses a  at 
every sampling step such that the total 
probability of the  most likely words is as 
close as possible to some constant .

In our experiments we set . This 
meant that most of the time the  chosen by 
nucleus sampling was a lot bigger than the 
constant value of  we were using for 
our top-  experiments.

kt

kt
p

p = 0.96
kt

k = 40
k



• Decoding Strategy Recap
• Automatic Detection of Generated Text
• Why is it difficult to answer the question “which decoding strategy is 

best”? 
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Recall that lower accuracy means that humans had a harder time 
distinguishing these samples from human-written ones.
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Human judged quality of generated tex:
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OUR RELATIVE STRENGTHS
Humans are good at detecting:
➤ Co-reference errors
➤ Contradictions
➤ Falsehoods or statements unlikely to 

be true
➤ Incorrect uses of a word
➤ Lack of fluency

Automatic systems are good at detecting:
➤ Differences in token frequencies
➤ Differences in the patterns of token 

likelihoods

Neural networks are lazy. They will learn 
semantic information (like the properties 
listed on the left) if they need to, but if there 
is some easier signal to pick up on, they will 
take advantage of that first.



TRADEOFFS IN DECODING

Diversity  Quality↔

Fool Machines  Fool Humans↔

Sample from full distribution  Reduce likelihood of already
low likelihood words …….

↔



CONCLUSIONS
➤ Even the best language models aren’t good enough at modeling language for us to 

sample from the full distribution and not make bad word choices.
➤ Reducing the weight of words in the tail decreases the chance we’ll make a bad word 

choice, but it also reduces the chance we’ll make interesting good word choices.
➤ Sampling from the tail of LM distributions, but sampling from the tail is necessary to 

get diverse text.



ANY QUESTIONS?
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