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WHAT IS A LANGUAGE MODEL®

A language model outputs the probability distribution over the next word given the
previous words in a string.

Historically, language models were statistical. If the word “apple” follows the word
“the” 2% of the times that “the” occurs in the text corpus, then P(“apple” |

the -y = 0.07

More recently, we use neural language models, which can condition on much longer
sequences, ie. P(“apple” | “I was about to eat the”). They are also able

to generalize to sequences which are not in the training set.




WHAT IS A LANGUAGE MODEL®

A REMINDER ABOUT THE CHAIN RULE

Using the chain rule, we can refer to the probability of a sequence of words as the
product of the conditional probability of each word given the words that precede it.

P([“I”, “ea.t”, “.the”, “app'l_e”:|> o

P(“app'l_e” | [“I”, “eat”, “.the”:|> %k P(“the” | [“I”, “eat”:l) Kk P(“eat” | [“I”:l) k P(“I”])

This is helpful since language models output P(y,|y;., ).




NEURAL LANGUAGE MODELS
UNCONDITIONED VS CONDITIONED

Neural language models can either be designed to just predict the next word given the previous ones, or they
can be designed to predict the next word given the previous ones and some additional conditioning sequence.

Unconditioned: P(Y) Conditioned: P(Y | X)
At each step the LM predicts: P(y,|y;.,_1) At each step the LM predicts: P(y,| y;.,_1, X;.7)
Tasks that are usually unconditioned: Tasks that are usually conditioned:

Story generation Machine translation

News article generation Abstractive text summarization

Simplification




NEURAL LANGUAGE MODELS
UNCONDITIONED VS CONDITIONED

Unconditioned neural language models only have a decoder. Conditioned ones have an
encoder and a decoder.

Unconditioned Language Model

Vi, ... 9y11‘)@_)})(yt — l)

Conditioned Language Model

YI, 9yl‘—1




NEURAL LANGUAGE MODELS
UNCONDITIONED VS CONDITIONED

Theoretically, any task designed for a decoder-only architecture can be turned into
one for an encoder-decoder architecture, and vice-versa.

Unconditioned (decoder-only) examples Conditioned (encoder-decoder) examples
Once upon a time there lived a beautiful ogre Once upon a time there lived a beautiful ogre who
who ... &d fell in love with...
[tag_Title] Truck Overturns on Highway Spilling Truck Overturns on Highway Spilling Maple Syrup &J
Maple Syrup [tag_Body] The truck was ... The truck was...
source] The hippopotamus ate my homework. The hippopotamus ate my homework. & ...
target]
complex] The incensed hippopotamus consumed my The incensed hippopotamus consumed my assignment.

assignment. [simple] ... &4 The angry hippo ate my ...




NEURAL LANGUAGE MODELS

The first step of building a neural language model is
constructing a vocabulary of valid tokens.

Each token in the vocabulary is associated with a vector
embedding, and these are concatenated into an embedding
matrix.

Vocabulary » Embedding matrix

the | ] —
ny

l |
embedding dimension

vocab size

kitten] ]

— P(Y, = i)

Encoder Decoder

Yis oo s Vi—1




NEURAL LANGUAGE MODELS

Encoder Decoder |—>P(Y; =)

Vi eee s Vi1
The first step of building a neural language model is
constructing a vocabulary of valid tokens.
Each token in the vocabulary is associated with a vector
embedding, and these are concatenated into an embedding
matrix.
Vocabulary » Embedding matrix I I I
the | ] o = =
2  EE— 2 / Encoder \
A — "L _ -
| |
: : embedding dimension L i
I I o) 432 2019 2 1234
kitten] ] T T T T T

The hippo ate my homework

10




NEURAL LANGUAGE MODELS

The encoder outputs a sequence of hidden states for each token
in the source sequence.

Encoder Decoder

Yis oo s Vi—1

The decoder takes as input the hidden states from the encoder as well as
the embeddings for the tokens seen so far in the target sequence.

enc enc A
h hT y,

/ Encoder \ Decoder /

432 2019 1234 75 2421

I t t

The hippo ate my homework Le hippotame




NEURAL LANGUAGE MODELS

Ideally the predicted embedding ¥y, is close to the

Encoder Decoder

Yis oo s Vi—1

embedding of the true next word.

A\

Y:

Decoder /////

2421

t o F

Le hippotame




NEURAL LANGUAGE MODELS

Ideally the predicted embedding y, is close to the embedding of the true next
word.

We multiply the predicted embedding by our vocabulary embedding matrix to
get a score for each vocabulary word. These scores are referred to as logits.

It's possible to turn the logits into probabilities.

Y:

logits
— /1
I = vocab size
\ Secoder / embedding
matrix E

exp(EV,[i
(fmes)  [(Eaoed) P(Y, =i|Xp.0,¥14-1) = i y{ 1).
75 2421 ' ' . K ])

T T ZJeXP( Y:LJ

Le hippotame

Encoder Decoder

Yis oo s Vi—1

—> P(Y; = i)




NEURAL LANGUAGE MODELS

Ideally the predicted embedding y, is close to the embedding of the true next
word.

We multiply the predicted embedding by our vocabulary embedding matrix to
get a score for each vocabulary word. These scores are referred to as logits.

It's possible to turn the logits into probabilities.

Y:

logits
— /1
I = vocab size
\ Secoder / embedding
matrix E

exp(EV,[i
(fmes)  [(Eaoed) P(Y, =i|Xp.0,¥14-1) = i y{ 1).
75 2421 ' ' . K ])

T T Z/eXp( Y:J

Le hippotame

Encoder Decoder

Yis oo s Vi—1

—> P(Y; = i)




NEURAL LANGUAGE MODELS
LOSS FUNCTION

T
S == Z log P(Y, =" | X1.75 ¥1.-1)

=1

15




NEURAL LANGUAGE MODELS
LOSS FUNCTION

T
S == Z log P(Y, = i* | X1.7v ¥1.-1)

=1

16




NEURAL LANGUAGE MODELS
LOSS FUNCTION

&
sy Z log P(Y, = i* | Xy.7, ¥ 1,-1)
=1

& Z pomeiulo e exp(Ey [i*])
2. exp(Ey,[j])

exp(Ey [i])

Recall: P(Yt = i‘XI:T’ YI:t—l) =




NEURAL LANGUAGE MODELS
LOSS FUNCTION

&
sy Z log P(Y, = i* | Xy.7, ¥ 1,-1)
=1

1 exp( Eyt[l*])
- E O
=S exp(EF.L]) 2. exp(EY [j])

exp(Ey,[i])

Reca”: P(Yt —_— i‘XllT’ yl:t—l) —




NEURAL LANGUAGE MODELS
LOSS FUNCTION

T
S == Z log P(Y, = i* | X1.7, ¥1.-1)

=1

i s exp(E§ [i*])
= expERHD

e
_— Z Eyt[l*]
=1




NEURAL LANGUAGE MODELS
SAMPLING ALGORITHM

At inference time, we need a sampling algorithm that selects a word given the predicted
probability distribution. In theory, we want to choose words so that we maximize P(Y) or P(Y | X),

but in practice this is intractable.

Unconditioned Language Model

Y1y ovn s Vil Decoder —> P(Y; =i)—>

Conditioned Language Model

X1yeeo o XT _,@ Decoder

Vis oo s YVi—1

sampling
agorithm

—> P(Y; =i)—

chosen word for
position t+1

sampling
agorithm

chosen word for
position t+1

Examples:
* Argmax
* Random sampling

« Beam search
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RECURRENT NEURAL NETWORKS

REFERENCED PAPER

Generating Sequences With
Recurrent Neural Networks

Alex Graves
Department of Computer Science
University of Toronto
graves@cs.toronto.edu

Abstract

This paper shows how Long Short-term Memory recurrent neural net-
works can be used to generate complex sequences with long-range struc-
ture, simply by predicting one data point at a time. The approach is
demonstrated for text (where the data are discrete) and online handwrit-
ing (where the data are real-valued). It is then extended to handwriting
synthesis by allowing the network to condition its predictions on a text
sequence. The resulting system is able to generate highly realistic cursive
handwriting in a wide variety of styles.




RECURRENT NEURAL NETWORKS

SINGLE LAYER DECODER ARCHITECTURE

The current hidden state is computed as a function of
the previous hidden state and the embedding of the

P(y,|é P(ys|e
Kl) KZ) current word in the target sequence.
- -
Decoder 1 2 ht — RNN(Wlhyt -+ Whhht—l e bh)

The current hidden state is used to predict an
embedding for the next word in the target sequence.

ét — be o Wheht

This predicted embedding is used in the loss function:

E €
probabilities
A = softmax = ,'

23




RECURRENT NEURAL NETWORKS
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P(y,|é P(ys|e
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E €
probabilities
A = softmax = ,'

24




RECURRENT NEURAL NETWORKS

MULTI-LAYER DECODER ARCHITECTURE

Computing the next hidden state:

For the first layer:

Decoder htl = RNN(Wlh1Yt I Whlhlhtl—l E bilz)

For all subsequent layers:

h; = RNN(W .y + W, hi™ + Wby + b))

Predicting an embedding for the next token in the
sequence:

L
ét = be T Z Whlehi
=1

Each of the b and W are learned bias and weight matrices.

25




RECURRENT NEURAL NETWORK

WHAT IS THE “RNN” UNIT?
@ ?




RECURRENT NEURAL NETWORK
WHAT IS THE “RNN” UNIT?

LSTM stands for long short-term memory.

An LSTM uses a gating concept to control how much
each position in the hidden state vector can be

. updated at each step.

LSTMs were originally designed as a mean to keep
around information for longer in the hidden state as it
gets repeatedly updated.

input gate i, = o (Wyixy + Wp;hy 1+ Wgci 1 + b;)
forget gate f, = o (Wyrxi + Wprhe 1 + Were1 + by)
cell state Cy = fici—1 + i tanh (Wyexi + Wychi—1 + be)
output gate 0; = o (Weox: + Wypohi 1 + Weoc: + by)
hidden state h, = o; tanh(cy)




RECURRENT NEURAL NETWORKS

GENERATED TEXT CIRCA 2015

The '''Rebellion''' (''Hyerodent'') 1s [[literal]], related mildly older than ol
d half sister, the music, and morrow been much more propellent. All those of [[H
amas (mass) |sausage trafflcklng]]s were also known as [ETFIP class submarinel 'S
ante'’ at Serassim]]; ''Verra'' as 1865&amp;ndash;682&amp;ndash;831 1is related t
O ballistic missiles. While she viewed 1t friend of Halla equatorial weapons of
Tuscany, in [[France]], from vaccine homes to &quot;individual&quot;, ampnﬁ [[sl
averylslaves]|] (such as artistual selling of factories were renamed English habi
t of twelve years.)

By the 1978 Russian [[Turkeyl|lTurkist]] capital city ceased by farmers and the 1n
tention of navigation the ISBNs, all encoding EETransylvania International Organ
1sation for Transition BankinglAttiking others]] 1t i1s in the westernmost placed
lines. This type of missile calculation maintains all %reater proof was the [[
1990s]] as older adventures that never established a self-interested case. The n

ewcgmers were Prosecutors in child after the other weekend and capable function
used.

Holding may be typicallﬁ largely banned severish from sforked warhing tools and
behave laws, allowing the private jokes, even through missile IIC control, most
notably each, but no relatively larger success, 1s not being reprinted and withd
rawn into forty-ordered cast and distribution.

Besides these markets (notably a son of humor).




RECURRENT NEURAL NETWORKS

GENERATED TEXT CIRCA 2015

The '''Rebellion''' (''Hyerodent'') 1s [[literal]], related mildly older than ol
d half sister, the music, and morrow been much more propellent. All those of [[H
amas (mass) |sausage trafflcklng]]s were also known as [ETFIP class submarinel 'S
ante'' at Serassim]]; ''Verra'® as 1865&amp;ndash;682&amp;ndash;831 1s related t
O ballistic missiles. While she viewed 1t friend of Halla equatorial weapons of
Tuscany, in [[France]], from vaccine homes to &quot;individual&quot;, ampnﬁ [[sl
averylslaves]|] (such as artistual selling of factories were renamed English habi
t of twelve years.)

By the 1978 Russian [[TurkeylTurkist]] capital city ceased by farmers and the 1in
tention of navigation the ISBNs, all encoding EETransylvania International Organ
1sation for Transition BankinglAttiking others]] 1t i1s in the westernmost placed
lines. This type of missile calculation maintains all %reater proof was the [[
1990s]] as older adventures that never established a self-interested case. The n

ewcgmers were Prosecutors in child after the other weekend and capable function
used.

Holding may be typicallﬁ largely banned severish from sforked warhing tools and
behave laws, allowing the private jokes, even through missile IIC control, most
notably each, but no relatively larger success, 1s not being reprinted and withd
rawn into forty-ordered cast and distribution.

Besides these markets (notably a son of humor).




RECURRENT NEURAL NETWORKS
VOCABULARY STRATEGIES

« Smaller vocab size
* Few to no out-of-vocabulary

tokens

Vocab Type Example
ChﬁI&CﬂH‘kﬂTﬂ [’A’, ) ), ’h’, ’i’, )p), )p), ’O’, )p), )O), ’t’, )a), me’

ud, ’s’,? 0, ad, g, le’, 0 0 ) )yz, » 0 opr g0

‘m’, ’e’, ’w’, ’0’, ’r’, ’k’, > 0]
subword-level [’A’, ’hip’, ’##pop’, ’##ota’, ’##mus’, ’ate’, ’my’,

>homework’, ’.°]
word-level [’A’, ’hippopotamus’, ’ate’, ’my’, ’homework’, ’.’]

» Larger vocab size
 Greater potential for out-of-

vocabulary tokens
» Tokens have more semantic

meaning



RECURRENT NEURAL NETWORKS

ENCODER-DECODER ARCHITECTURES

How do we connect the encoder with the decoder?

enc enc
h ] ) h~
/ Encoder \ Decoder /

432 2019 1234 2421

The hippo ate my homework Le hippotame




RECURRENT NEURAL NETWORKS

ENCODER-DECODER ARCHITECTURES

Simplest approach: Use the final hidden
state from the encoder to initialize the
first hidden state of the decoder.

enc enc
hl h2
A A

Encoder
@HH
h, h, h,
| I

32

P(y>ler) P(ys|ey)

\\il:::tw
h%nc




RECURRENT NEURAL NETWORKS

ENCODER-DECODER ARCHITECTURES

Better approach: an attention mechanism

[The, hippopotamus, ...

Translate Fr to En

[L’, hippopotame, a, mangé, mes, devoirs]

33




ENCODER-DECODER ARCHITECTURES

Better approach: an attention mechanism

[The, hippopotamus,

Translate Fr to En

[L’, hippopotame, a, mangé, mes, devoirs]

RECURRENT NEURAL NETWORKS

Compute a linear combination of the encoder hidden states.

I= a1I+0(2
C;

+0(3I 4+ ... -I-aTI

Decoder's prediction at position tis based on both the context
vector and the hidden state outputted by the RNN at that position.




RECURRENT NEURAL NETWORKS

ENCODER-DECODER ARCHITECTURES

The tth context vector is computed as ¢, = H*"“a..

The context and encoder hidden state can be concatenated
together and passed through a small feed-forward network which I= a1I+a2
C; )

predicts an output embedding for position i.

&, = £([c,; h9e<))

Compute a linear combination of the encoder hidden states.

+a3I + ... -I-OCTI

Decoder's prediction at position tis based on both the context
vector and the hidden state outputted by the RNN at that position.

35




RECURRENT NEURAL NETWORKS

ENCODER-DECODER ARCHITECTURES

The tth context vector is computed as ¢, = H*"¢q..

But how do we compute the a,?

Compute a linear combination of the encoder hidden states.

There are a few different options for the attention score:

a il — softmax(att_score(hflec, hienc)) I I
= Qi T2
C;

hdec . penc dot product

att_score(hflec, e — h;:lecwahienc bilinear function

w/ tanh <Wa2[hf|ec, h?”c]) MLP

+a3I + ... -I-OCTI

Decoder's prediction at position tis based on both the context
vector and the hidden state outputted by the RNN at that position.




RECURRENT NEURAL NETWORKS
LIMITATIONSS

* Recurrent neural networks are slow to train. The computation at position t is
dependent on first doing the computation at position t-1.

* LSTMs were design to keep important information in the hidden state’s memory for
longer (than simpler RNN units). However they are still not great at this.

 If two tokens are K positions apart, there are K opportunities for knowledge of the first token to be erased
from the hidden state before a prediction is made at the position of the second token.

« To combat the forgetting, encoder networks are often bidirectional: one LSTM runs
through the sequence left-to-right, and another runs through right-to-left. The

outputs are concatenated.

» This is a kludge rather than a real solution.
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TRANSFORMERS

REFERENCED PAPER

Attention Is All You Need

Ashish Vaswani* Noam Shazeer” Niki Parmar” Jakob Uszkoreit”
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones” Aidan N. Gomez" ' Fukasz Kaiser”
Google Research University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin* *
illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.8 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applying it successfully to English constituency parsing both with
large and limited training data.




TRANSFORMERS S
“ATTENTION IS ALL YOU NEED”

The Transformer is a non-recurrent non-

convolutional neural network designed for
language understanding that introduces self-

attention in addition to encoder-decoder l

Multi-Head
Attention

-
attention. Forward

Add & Norm

N ~(AddE Norm_
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
1 1 J
Positional »‘ Positional
. & ‘ .
Encoding S QS Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)




T RA N S F O R M E RS Prci)tggillf’:ies

“ATTENTION IS ALL YOU NEED”
l
Forward

Add & Norm

Multi-Head
Attention

)
_Add & Norm

The Transformer: A feed-forward neural network
designed for language understanding.
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“ATTENTION IS ALL Y( s |
Y Linear

exp(Ey,[i])

The Transformer: A teed-torward neural network — roi=iv0 -0 AdJ & Norm
designed for language understanding. Feed

Forward

Add & Norm
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TRANSFORMERS

Qutput
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THE ATTENTION MECHANISM
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MULTI-HEAD ATTENTION

Add & Norm
Feed
Forward
Add & Norm

Multi-Head
Attention

Multi-Head Self-attention between a sequence
Attention of hidden states and that same

sequence of hidden states.

Feed
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TRAN S FO RM E RS Prci)tggillf’:ies
MULTI-HEAD ATTENTION

Encoder-decoder attention, like what has
been standard in recurrent seg2seq models.

Add & Norm

Multi-Head
Attention

Linear
Concat

N x

Add & Norm

Scaled Dot-Product N Add & Norm M asked
Attention Multi-Head Multi-Head

I I Attention Attention
. 1 J . 1 J

Positional Iti
Linear Enclolding e & N e Eggct)lgi?g

T Input Output
\/ Q Embedding Embedding

Inputs Outputs
(shifted right)
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THE ATTENTION MECHANISM

Scaled Dot-Product Attention

Qutput
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SCALED DOT-PRODUCT ATTENTION
(Scaled Dot-Product The scaled-dot product attention mechanism is almost

identical to the one we learned about in the previous
section. However, we'll reformulate it in terms of matrix
multiplications.

Add & Norm

: Xl
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The 4/d, in the denominator is there to prevent the dot

product from getting too big. Inputs Outputs
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SCALED DOT-PRODUCT ATTENTION
(Scaled Dot-Product The scaled-dot product attention mechanism is almost

identical to the one we learned about in the previous
section. However, we'll reformulate it in terms of matrix
multiplications.
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(Scaled Dot-Product )
< Q K \V y

TRANSFORMERS

SCALED DOT-PRODUCT ATTENTION

: QK’
Attention(Q, K, V) = softmax \/7 V
k

My attempt at an English translation:
For each of the vectors in Q, the query matrix, take a linear sum of the
vectors in V, the value matrix.
The amount to weigh each vector in V is dependent on how “similar”
that vector is to the query vector.
“Similar” is measured in terms of the dot product between the
vectors.

For encoder-decoder attention:
Keys and values come from encoder’s final output.
Queries come from the previous decoder layer’s outputs.

For self-attention:
Keys, queries, and values all come from the outputs of the previous
layer.
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TRANSFORMERS

MULTI-HEAD ATTENTION

. QK’
Attention(Q, K, V) = softmax \/Z \Y
k

MultiHeadAtt(Q, K, V) = Concat(heady, ..., head,)W?
where head, = Attention(QWlQ, KWZK, VWZV)

Instead of operating on Q, K, and V directly, the
mechanism projects each input into a smaller

dimension. This is done /& times. The attention
operation is performed on each of these “heads,”
and the results are concatenated.

Multi-head attention allows the model to jointly
attend to information from different representation
subspaces at different positions.
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TRANSFORMERS

MULTI-HEAD ATTENTION

Two different self-attention heads:

The — The The — The
Law Law Law se— Law
will will will will
never never never74 never
be be be — be
perfect perfect perfect = perfect
but but DUt - but
its its its — itS
application application application = application
should - should should should
be be be — be
just just JUST s just
this this this this
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what == what what what
we we we we
are are are/are
missing missing missing missing
in in in / in
My =i my my my
opinion opinion opinion - opinion
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<pad> <pad> <pad> <pad>
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TRANSFORMERS S
INPUTS TO THE ENCODER
The input into the encoder looks like:

Token Embeddings: Position Embeddings: Add & Norm
enc - Forward
HO - padding -+
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TRANSFORMERS

THE ENCODER

Multi-Head - . enc enc enc
- MultiHeadAtt(HE"S, HES, HENS)
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TRANSFORMERS

THE ENCODER

Multi-Head - . enc enc enc
- MultiHeadAtt(HE"S, HES, HENS)

Multi-Head
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TRANSFORMERS

THE ENCODER

Multi-Head - . enc enc enc
- MultiHeadAt(HEN®, HEMC, HONC
. Multi-Head enc
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TRANSFORMERS

THE ENCODER

Multi-Head - . enc enc enc
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TRANSFORMERS

THE DECODER

— token embeddings + position embeddings

Qutput
Probabillities

Add & Norm

Multi-Head
Attention

Add & Norm

N —~(AddE Norm_

Add & Norm Masked

Multi-Head Multi-Head

Attention Attention

1 J 1 J
Positional »‘ Positional

. & ‘ .

Encoding Lt L Encoding

Input
Embedding

Inputs

Qutput
Embedding

Outputs
(shifted right)




TRANSFORMERS

THE DECODER

= MaskedMuItiHeadAtt(HldeC, Hldec’ Hldec)

Layer:| 54 iAttention: Output - Output %

Das_
Tier
uber
quer
te_

die_
Strale_
nicht_
weil_
es

Add & Norm

Add & Norm
Multi-Head
Attention
1 J

Positional
Encoding e P
Input
Embedding

Inputs

N x

Qutput
Probabillities

Add & Norm
Feed
Forward
Add & Norm

Multi-Head
Attention

N x

Add & Norm

Masked
Multi-Head
Attention

Positional
N e Encoding
Qutput
Embedding

Outputs
(shifted right)
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THE DECODER
Masked Multi- . dec dec dec
= MaskedMultiHeadAtt(H"=~, H"™~"~, H"=")
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THE DECODER
= MaskedMuItiHeadAtt(HldeC, Hldec’ Hldec)
= LayerNorm( ; H,dec)

= MultiHeadAtt(HE"®, HIeC, HIeC)
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T RA N S F O RM E RS Prci)tggiwtties
THE DECODER
= MaskedMuItiHeadAtt(HldeC, Hldec’ Hldec)
= LayerNorm( ; H,dec)

= MultiHeadAtt(HE€C, HENC, HENC)
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THE DECODER

= MaskedMuItiHeadAtt(HldeC, Hldec’ Hldec)
= LayerNorm( + Hidec)
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TRANSFORMERS

GENERATED TEXT CIRCA 2018

"The Transformer™ are a Japanese [[hardcore punk]] band.

==Early years==

The band was formed in 1968, during the height of Japanese music history. Among the legendary [[Japanese people|Japanese]] composers of
[Japanese lyrics], they prominently exemplified Motohiro Oda's especially tasty lyrics and psychedelic intention. Michio was a longtime member of the
every Sunday night band PSM. His alluring was of such importance as being the man who ignored the already successful image and that he municipal
makeup whose parents were&amp;nbsp;— the band was called Jenei.&lt;ref&gt;http://www.separatist.org/se_frontend/post-punk-musician-the-kidney.
html&lt;/ref&gt; From a young age the band was very close, thus opting to pioneer what had actually begun as a more manageable core hardcore
punk band.&lt;ref&gt; http://www.talkradio.net/article/independent-music-fades-from-the-closed-drawings-out&lt;/ref&at;

==History==
===Born from the heavy metal revolution===
In 1977 the self-proclaimed King of Tesponsors, [[Joe Lus:

: It was somewhere... it was just a guile ... taking this song to Broadway. It was the first record | ever heard on A.M., After some opposition | received
at the hands of Parsons, and in the follow-up notes myself.&lt;ref&gt:http://www.discogs.conv/artist/ The+Op%CS5%8Dn+&amp;+Psalm&lt;/ref&gt;

The band cut their first record album titled "Transformed, furthered and extended Extended",&lt;ref&gt;[https://www.discogs.com/album/69771 MC —
Transformed EP (CDR) by The Moondrawn — EMI, 1994]&lt;/ref&gt; and in 1978 the official band line-up of the three-piece pop-punk-rock band TEEM.
They generally played around [[Japan]], growing from the Top 40 standard.

===1981-2010: The band to break awa
On 1 January 1981 bassist Michio Kono, and the members of the original line-up emerged. Niji Fukune and his [[Head poet|Head]] band (now
guitarist) Kazuya Kouda left the band in the hands of the band at the May 28, 1981, benefit season of [[Led Zeppelin]]'s Marmarin building. In June
1987, Kono joined the band as a full-time drummer, playing a few nights in a 4 or 3 hour stint with [[D-beat]]. Kono played through the mid-1930s, at
Shinlie, continued to play concerts with drummers in Ibis, Cor, and a few at the Leo Somu Studio in Japan. In 1987, Kono recruited new bassist Michio
Kono and drummer Ayaka Kurobe as drummer for band. Kono played trumpet with supplement music with Saint Etienne as a drummer. Over the next
few years Kono played as drummer and would get many alumni news invitations to the bands' "Toys Beach" section. In 1999 he joined the [[CT-182]].

His successor was Barrie Bell on a cover of [[Jethro Tull (band)|Jethro Tull]]'s original 1967 hit &quot;:Back Home&quot; (last appearance was in
Jethro), with whom he shares a name.
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===2010 — present: The band to split===

In 2006 the band split up and the remaining members reformed under the name Starmirror, with Kono in tears, Kurobe, and Kurobe all playing
harmonica with Kooky Bell and a new guitarist again. While Jaari also had the realist DJ experience, The SkykelDaten asked New Bantherhine, who
liked Kono and Kurobe, to join him on guitar. Kono is now playing in the studio a new formation, and at their 11th anniversary concert, made a wide
variety of music and DJ equipment including two new vocalists: Dejeh Faida and Janis. NARCO (Inc.) privileges areas sections until 2012. and in
2015 both were members as members as were Dicent and Cautty.

In 2014, the album "[[Marco Victoriano in Focus]]" was released, and entered the Japanese albums chart at number 69 in the [[Oricon Singles
Chart]].&lt;ref name=&quot;oricon&quot;&gt;{{cite web|titte=THE GER: THE TALENT RAILWAY LIVERSITIES|url=http://www.
oricon.co.jp/prof/inductee/30565/ranking/cd/1/|work=OriconStyle|accessdate=11 Jul 2014}}&lt;/ref&gt; The album was also in Japan, where [[Hoite
(musician)|Hoite]] recorded and released an album in October 2011, and a short album, titled "[[Grateful]]" in 2012.&lt;ref&gt;{{cite web
|url=http://www.oricon.co.jp/prof/artist/229337/ranking/cd/1/|titte=HORIZON HISTORY|publisher=oricon.co.jp|accessdate=9 Nov
2014|language=ja}}&lt;/ref&gt; Kono played the [[N9ne]] bass with Tony "Shadows Without a Face", and released his music from the new [[Smile
(record label)|Smile]] label with original Fat Joe Lang "Remix and Bachian" cassette.

==Style==
The band's style has been compared to [[Radar|radar-based]], influenced by bands such as [[Metallica]], [[Damage (Japanese band)|Damage]],
[[Dreadzone]], and [[Girlschool]].

The group classifies itself as &quot;the first band to play a Used Of American Inside the Outer East&quot;,&lt;ref&gt;http://
www.funonline.jp/i/main.php?coniD=005&amp;artiD=125484&lt;/ref&gt; including the band's usual Eugene Terre ensemble. He later stated that the raw
interviews in Metal Hammer and Metallica gave reason to what they considered that an explosion of the live band started by the band.&lt;ref&gt;http://
stillenterprise.com/en/interviews/last-night-reunion-confronts-kooky-spearing-the-charismatic-dynamic-partnership/&ilt:/ref&gt;

[[Hunt's Brigade]], a surf-rock band from Tokyo, has cited the band's music as being &quot:straight ahead of their time / | did but only read five songs
(played now), a beat, rock blast, a bit of a bass blast, good lyrics, and a few&quot;.&lt;ref&gt;http://stillenterprise.com/en/announcements/Package-
a2/Swag-w-Vause-042332/&lt:/ref&gt; Halutodrinking, a popular-sounding drum style, has described the band as being &quot;supporting [mod]ed

distrust&quot;, because it incorporated the track as an ensemble and did not fit into any of the more darling songs from their previous incarnation,
which was forging a strong style to a lot of different

Credit: Generating Wikipedia by Summarizing Long Sequences <https://arxiv.org/abs/1801.10198>
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TAKEAWAYS

EXTENSIONS TO TRANSFORMER ARCHITECTURE

Relative attention enables Transformer to generate longer sequences than it was trained
on.

« "Self-Attention with Relative Position Representations” <https://arxiv.org/abs/1803.02155>

Massive multi-GPU parallelization allows training giant language models (Microsoft just
released one with 17 billion parameters).

* https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

Distillation allows smaller models to be formed from bigger ones.

« "Distilling Transformers into Simple Neural Networks with Unlabeled Transfer Data” <https://arxiv.org/abs/
1910.01/769>

Lots of attempts to make sparse attention mechanisms work.

- "Efficient Content-Based Sparse Attention with Routing Transformers” <https://openreview.net/forum?
id=B1gjs6EtDr>

» "Reformer: The Efficient Transformer” <https://arxiv.org/abs/2001.04451>
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OUTLINE

Neural language model framework
LM Architectures

» Recurrent neural networks

» Transformers

Decoding Strategies

Transformers for natural language understanding
- BERT
> 15




OUTLINE

 Decoding Strategy Recap
* Automatic Detection of Generated Text
 Why is it difficult to answer the question “which decoding strategy is best”?
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Recall that language models output a probability
distribution P(Y, = i|y;.,_1)

Unconditioned Language Model

— samplin A
Y15 «ees Yiﬁ%ﬁ P(Yy1=v)—> agorFi)t;\rr? Yist

Conditioned Language Model

i sampling A
X1, ..., Xr7—>1  Encoder » Decoder —>P(Yjgj1=v)—> agorithm Yi+1

Y1, s Vi
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However, we're most interested in finding the most likely
overall sequence P(y, ..., V7).

Recall that using the chain rule, we can refer to the probabillity of a sequence
of words as the product of the conditional probability of each word given the

words that precede it.
PC[“I”, “eCl't”, “the”, “app'l_e”:|> —
P(“app'l_e” | [“I”, “eCl't”, “the”:l) Kk P(“the” | [“I”, “eCI't”:D k P(“eat” | [“I”]) k P([CCI”])

Actually maximizing P(y,, ..., y7) is intractable, so we try to approximate
doing so when choosing a next token based on the P(Y, = i|y;.,_)

outputted by the LM.
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How can we sample from P(Y, =1]|y;.,_)?

Option 1: Take argmax P(Y, = i|y;.._{)
i

70

Example:
Suppose our vocal consists of 4 words:

7 = {apple, banana, orange, plum}

We have primed our language “apple apple” and
want to use it to make a predict for the 3rd word in
the sequence.

Our language model predicts:

P(Y; = apple| Y, = apple, ¥, = apple) = 0.05
P(Y; = banana|Y; = apple, Y, = apple) = 0.65
P(Y; = orange | Y, = apple, Y, = apple) = 0.2
P(Y; = plum | Y, = apple, ¥, = apple) = 0.1

If we sample with argmax, what word would get
selected?




How can we sample from P(Y, =1]|y;.,_)?

Example:
Suppose our vocal consists of 4 words:

7" = {apple, banana, orange, plum}

Option 1: Take argmax P(Y, = i|y;.._{)
i

Option 2: Randomly sample from the distribution
returned by the model.

We have primed our language “apple apple” and
want to use it to make a predict for the 3rd word In
the sequence.

Our language model predicts:

P(Y; = apple| Y, = apple, ¥, = apple) = 0.05
P(Y; = banana|Y; = apple, Y, = apple) = 0.65
P(Y; = orange | Y, = apple, Y, = apple) = 0.2
P(Y; = plum | Y, = apple, ¥, = apple) = 0.1

If we use random sampling, what is the probability
that “plum” will get chosen as the third word?
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How can we sample from P(Y, =1]|y;.,_)?

Option 1: Take argmax P(Y, = i|y;.,_;)
i

Option 2: Randomly sample from the distribution
returned by the model.

Problem with Random Sampling

Most tokens in the vocabulary get assigned very
low probabillities but cumulatively, choosing any
one of these low-probabillity tokens becomes
pretty likely. In the example on the right, there is
over a 17% chance of choosing a token with

P(Y, = i) < 0.01.
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How do we sample from P(Y, =i|y;.,_)?

Option 1: Take argmax P(Y, = i|y;.,_;)
i

Option 2: Randomly sample from the distribution
returned by the model.

Problem with Random Sampling

Most tokens in the vocabulary get assigned very
low probabillities but cumulatively, choosing any
one of these low-probabillity tokens becomes
pretty likely. In the example on the right, there is
over a 17% chance of choosing a token with

P(Y, = i) < 0.01.
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How do we sample from P(Y, =i|y;.,_)?

Option 1: Take argmax P(Y, = i|y;.,_;)
i

Option 2: Randomly sample from the distribution
returned by the model.

Option 3: Randomly sample with temperature.

exp(z,/T)

P(Y,=1) = -Zj exp(zj/T)

4
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How do we sample from P(Y, =i|y;.,_)?

Option 1: Take argmax P(Y, = i|y;.,_;)
i

Option 2: Randomly sample from the distribution
returned by the model.

Option 3: Randomly sample with temperature.
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How do we sample from P(Y, =i|y;.,_)?

Option 1: Take argmax P(Y, = i|y;.._{)
i

Option 2: Randomly sample from the distribution
returned by the model.

Option 3: Randomly sample with temperature.

P(Y,= i) =

exp(z;/T)

ZJ eXp(Z]/T)

/0

Example:
Suppose our vocal consists of 4 words:

7" = {apple, banana, orange, plum}

We have primed our language “apple apple” and
want to use it to make a predict for the 3rd word In
the sequence.

Our language model predicts:

P(Y; = apple| Y| = apple, ¥, = apple) = 0.05
P(Y; = banana| Y, = apple, Y, = apple) = 0.65
P(Y; = orange | Y; = apple, ¥, = apple) = 0.2
P(Y; = plum | Y, = apple, ¥, = apple) = 0.1

What would the probability of selecting “banana”
be if we use temperature sampling and set

T = c0?




How do we sample from P(Y, =i|y;.,_)?

Option 1: Take argmax P(Y, = i|y;.._{)
i

Option 2: Randomly sample from the distribution
returned by the model.

Option 3: Randomly sample with temperature.

exp(z;/T)
ZJ €XP(ZJ/T)

P(Y,= i) =

0.00010
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0.00006 A
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Example:
Suppose our vocal consists of 4 words:

7" = {apple, banana, orange, plum}

We have primed our language “apple apple” and
want to use it to make a predict for the 3rd word Iin
the sequence.

Our language model predicts:

P(Y; = apple| Y| = apple, ¥, = apple) = 0.05
P(Y; = banana|Y; = apple, Y, = apple) = 0.65
P(Y; = orange | Y; = apple, Y, = apple) = 0.2
P(Y; = plum | Y, = apple, ¥, = apple) = 0.1

What would the probability of selecting “banana”
be iIf we use temperature sampling and set

T = c0?




How do we sample from P(Y, =i|y;.,_)?

Option 1: Take argmax P(Y, = i|y;.._{)
i

Option 2: Randomly sample from the distribution
returned by the model.

Option 3: Randomly sample with temperature.

P(Y,= i) =

exp(z;/T)

ZJ eXp(Z]/T)

/3

Example:
Suppose our vocal consists of 4 words:

7 = {apple, banana, orange, plum}

We have primed our language “apple apple” and
want to use it to make a predict for the 3rd word In
the sequence.

Our language model predicts:

P(Y; = apple| Y, = apple, ¥, = apple) = 0.05
P(Y; = banana| Y, = apple, Y, = apple) = 0.65
P(Y; = orange | Y| = apple, ¥, = apple) = 0.2
P(Y; = plum | Y, = apple, ¥, = apple) = 0.1

What would the probability of selecting “banana”
be if we use temperature sampling and set

T = 0.00001?




How do we sample from P(Y, =i|y;.,_)?

Option 1: Take argmax P(Y, = i|y;.._{)
i

Option 2: Randomly sample from the distribution
returned by the model.

Option 3: Randomly sample with temperature.

P(Y,= i) =

exp(z;/T)

ZJ eXp(Z]/T)
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Example:
Suppose our vocal consists of 4 words:

7 = {apple, banana, orange, plum}

We have primed our language “apple apple” and
want to use it to make a predict for the 3rd word In
the sequence.

Our language model predicts:

P(Y; = apple| Y, = apple, ¥, = apple) = 0.05
P(Y; = banana| Y, = apple, Y, = apple) = 0.65
P(Y; = orange | Y| = apple, ¥, = apple) = 0.2
P(Y; = plum | Y, = apple, ¥, = apple) = 0.1

What would the probability of selecting “banana”
be if we use temperature sampling and set

T = 0.00001?




How do we sample from P(Y, =i|y;.,_)?

Option 1: Take argmax P(Y, = i|y;.,_;)
i

Option 2: Randomly sample from the distribution
returned by the model.

Option 3: Randomly sample with temperature.

Option 4: Introduce sparsity by reassigning all
probability mass to the k most likely tokens. This is
referred to as top-k sampling.
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How do we sample from P(Y, =i|y;.,_)?

Option 1: Take argmax P(Y, = i|y;.,_;)
i

Option 2: Randomly sample from the distribution
returned by the model.

Option 3: Randomly sample with temperature.

Option 4: Introduce sparsity by reassigning all
probability mass to the k most likely tokens. This is
referred to as top-k sampling.

Option 5: Reassign all probability mass to the k, most

likely tokens, where kt IS automatically selected at
every step. It is chosen such that the total probability

of the k, most likely tokens is no greater than a desired
probability p . This is referred to as nucleus sampling.
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How do we sample from P(Y, =i|y;.,_)?

Option 1: Take argmax P(Y, = i|y;.,_;)
i

Option 2: Randomly sample from the distribution
returned by the model.

Option 3: Randomly sample with temperature.

Option 4: Introduce sparsity by reassigning all
probability mass to the k most likely tokens. This is
referred to as top-k sampling.

Option 5: Reassign all probability mass to the k, most

likely tokens, where kt IS automatically selected at
every step. It is chosen such that the total probability

of the k, most likely tokens is no greater than a desired
probability p . This is referred to as nucleus sampling.

Option 6: Use some version of beam search.
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Beam search operates under the assumption
that the best possible sequence to generate iIs
the one with lowest overall sequence likelihood.
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Greedy search methods do not always lead to the
most likely output.

10 Vocabulary = {a, b, </s>}
/s> Numbers above each edge are the transition
10 probabilities P(x,|x;.,_,)
></S>
10 : Question:
gl If we were to decode with argmax what
10 would be the generated sequence?
gkl [a, b, </s>]

[a, a, </s>]
_________________________________________________________________ S [b, b, </s>]
[b, a, </s>]

Figure 22: A search graph where greedy search fails.
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Greedy search methods do not always lead to the
most likely output.

10 Vocabulary = {a, b, </s>}
/s> Numbers above each edge are the transition
10 probabilities P(x,|x;.,_,)
></S>
10 : Question:
gl If we were to decode with argmax what
10 would be the generated sequence?
gkl [a, b, </s>]

[a, a, </s>]

[b, a, </s>]

Figure 22: A search graph where greedy search fails.
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Greedy search methods do not always lead to the
most likely output.

10 Vocabulary = {a, b, </s>}
"S> Numbers above each edge are the transition
10 o5 probabilities P(x,|x;.,_,)
10 : Question:
gkl If we were to decode the sequence that
1.0 optimally maximizes P(x,, ..., X;), what
»</S>

would be the generated sequence?

5 E [a, b, </s>]
[a, a, </s>]

[b, b, </s>]
Figure 22: A search graph where greedy search fails. [b, a, </s>]
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Greedy search methods do not always lead to the
most likely output.

10 Vocabulary = {a, b, </s>}
"S> Numbers above each edge are the transition
10— probabilities P(x,|x;.,_,)
10 : Question:
gkl If we were to decode the sequence that
1.0 optimally maximizes P(x,, ..., X;), what
»</S>

would be the generated sequence?

[a, a, </s>]

[b, b, </s>]
Figure 22: A search graph where greedy search fails. [b, a, </s>]
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Beam search is an algorithm that explores multiple possible
output sequences to find the overall most likely one.

Vocabulary = {a, b, </s>}

i Numbers above the boxes are log P(x, | X1.1—1)

Tl Numbers shown on edges are log P(x, ..., x,)
’ Recall that minimizing log probability is
equivalent to maximizing probability.
Suppose we use beam search with a beam
5 size of 2.
0 -1.615
< /S >
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Beam search is an algorithm that explores multiple possible
output sequences to find the overall most likely one.

Vocabulary = {a, b, </s>}

i Numbers above the boxes are log P(x, | X1.1—1)

Tl Numbers shown on edges are log P(x, ..., x,)
’ Recall that minimizing log probability is
equivalent to maximizing probability.
Suppose we use beam search with a beam
5 size of 2.
0 -1.615
< /S >
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Beam search is an algorithm that explores multiple possible
output sequences to find the overall most likely one.

Vocabulary = {a, b, </s>}

i Numbers above the boxes are log P(x, | X1.1—1)

Tl Numbers shown on edges are log P(x, ..., x,)
’ Recall that minimizing log probability is
-1.05 equivalent to maximizing probability.
-1.05w7 &
O 9o -0.92 Suppose we use beam search with a beam
<S>Ker. 2 “D” 5 size of 2.
< [S>
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Beam search is an algorithm that explores multiple possible
output sequences to find the overall most likely one.

-2.95 Vocabulary = {a, b, </s>}
190 JX] Numbers above the boxes are log P(x, | x;.,_{)
1,27 -1.27.
A 07111 0 oy Numbers shown on edges are log P(x, ..., x,)
r Recall that minimizing log probability is
105 _3_0()?'4-05 equivalent to maximizing probability.
-1.05q71 2 [ ' % j
0 .92 092 -0.92 JIlESAr Suppose we use beam search with a beam
e | ’ size of 2.
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Beam search is an algorithm that explores multiple possible
output sequences to find the overall most likely one.

o -l27i

< /s>
0 -1.615
< /S

92

Vocabulary = {a, b, </s>}

Numbers above the boxes are log P(x, | x;.,_{)

Numbers shown on edges are log P(x, ..., x,)

Recall that minimizing log probability is
equivalent to maximizing probability.

Suppose we use beam search with a beam
size of 2.



Problems with Beam Search

|t turns out for open-ended tasks like
dialog or story generation, optimizing
for the sequence with the highest
possible P(xy, ..., xy) isn’t actually a
great idea.
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Problems with Beam Search

|t turns out for open-ended tasks like
dialog or story generation, optimizing
for the sequence with the highest
possible P(xy, ..., xy) isn’t actually a
great idea.

« Beam search generates text with a
very different distribution of
sequence likelihoods than human-
written text.
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Problems with Beam Search

|t turns out for open-ended tasks like

dialog or story generation, optimizing - :
for the sequence with the highest ) ®
possible P(xy, ..., xy) isn’t actually a 2.5

great idea.

« Beam search generates text with a
very different distribution of
sequence likelihoods than human-
written text. 1.0

o When sequence likelihood is too e oo v 1e0 e 100 e a0 o
high, humans rate the text as bad. g p(x)

Human Judgement
i W
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Diverse Beam Search Algorithms

 For along time, people tried to improve beam to make it produce more diverse text.
Methods included:

* Restrict the set of hypotheses that get considered at each step.

Method

Description

Method

Description

Random Sampling

Standard decoding mechanism,
greedily samples a token from the
distribution at each time step.

Random Sampling
with Temperature

Before sampling, modify entropy
of predicted distribution.

Top-s Random

Restrict sampling to the s-most

Standard decoding mechanism,
keeps the top b partial hypotheses

Sampling likely words in the distribution. Beam Search at every time ste
(Fan et al., 2018) (story generation) Y P
(machine translation)
Add random noise to the hidden T Cappi il G ALY )
NPAD Beam Search ) PRGN Y UL hypotheses from each parent
(Cho, 2016) state of the decoder at each time Beam Search hypothesis at each time step.

step. (machine translation)

(Li and Jurafsky, 2016

(machine translation, dialog)

Hamming Diversity
Beam Search
(Vijayakumar et al.,
2016)

Penalize new hypotheses that have
many of the same tokens as
existing partial hypotheses.
(image captioning)

Iterative Beam Search
(Kulikov et al., 2018)

Run beam search several times,
preventing later iterations from
generating intermediate states
already explored. (dialog)

Clustered Beam

Search
(Tam et al., 2019)

Initially consider more hypotheses
at each time step, and then cluster
similar hypotheses together.
(dialog)

Post-Decoding
Clustering (Ours)

Sample a large number of
candidates, and then cluster
similar outputs together.
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Diverse Beam Search Algorithms

For a long time, people tried to improve beam to make it produce more diverse text.

Methods included:
* Restrict the set of hypotheses that get considered at each step.

Incorporate diversity into the scoring function used to rank the current hypothesis set.

Method Description Method Description
Standard decoding mechanism, : : :
Random Sampling greedily samples a token from the Random Sampling Before sampling, modify entropy

distribution at each time step.

with Temperature

of predicted distribution.

Top-s Random
Sampling
(Fan et al., 2018)

Restrict sampling to the s-most
likely words in the distribution.
(story generation)

Beam Search

Standard decoding mechanism,
keeps the top b partial hypotheses
at every time step.

(machine translation)

NPAD Beam Search
(Cho, 2016)

Add random noise to the hidden
state of the decoder at each time
step. (machine translation)

Top-g Capping
Beam Search
(Li and Jurafsky, 2016)

Only consider the top c

hypotheses from each parent
hypothesis at each time step.
(machine translation, dialog)

Hamming Diversity
Beam Search
(Vijayakumar et al.,

2016)

Penalize new hypotheses that have
many of the same tokens as
existing partial hypotheses.
(image captioning)

Iterative Beam Search
(Kulikov et al., 2018)

Run beam search several times,
preventing later iterations from
generating intermediate states
already explored. (dialog)

Clustered Beam
Search
(Tam et al., 2019)

Initially consider more hypotheses
at each time step, and then cluster

similar hypotheses together.
(dialog)

Post-Decoding
Clustering (Ours)

Sample a large number of
candidates, and then cluster
similar outputs together.
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Diverse Beam Search Algorithms

For a long time, people tried to improve beam to make it produce more diverse text.

Methods included:
* Restrict the set of hypotheses that get considered at each step.

Incorporate diversity into the scoring function used to rank the current hypothesis set.

* Add noise to the model weights to encourage diversity

Method Description Method Description
Standard decoding mechanism, : : :
Random Sampling greedily samples a token from the Random Sampling Before sampling, modify entropy

distribution at each time step.

with Temperature

of predicted distribution.

Top-s Random
Sampling
(Fan et al., 2018)

Restrict sampling to the s-most
likely words in the distribution.
(story generation)

Beam Search

Standard decoding mechanism,
keeps the top b partial hypotheses
at every time step.

(machine translation)

NPAD Beam Search
(Cho, 2016)

Add random noise to the hidden
state of the decoder at each time
step. (machine translation)

Top-g Capping
Beam Search
(Li and Jurafsky, 2016)

Only consider the top c

hypotheses from each parent
hypothesis at each time step.
(machine translation, dialog)

Hamming Diversity
Beam Search
(Vijayakumar et al.,
2016)

Penalize new hypotheses that have
many of the same tokens as
existing partial hypotheses.
(image captioning)

Iterative Beam Search
(Kulikov et al., 2018)

Run beam search several times,
preventing later iterations from
generating intermediate states
already explored. (dialog)

Clustered Beam

Search
(Tam et al., 2019)

Initially consider more hypotheses
at each time step, and then cluster

similar hypotheses together.
(dialog)

Post-Decoding
Clustering (Ours)

Sample a large number of
candidates, and then cluster
similar outputs together.
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When to use standard beam search:

* Your domain is relatively closed (for
example, machine translation)

* Your language model is not very good
(you don't trust the P(x, | x;.,_;) it
returns)

When to use one of the diverse beam
search methods discussed in paper:

* Almost never, especially if your
language model is good.
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OUTLINE

* Decoding Strategy Recap
 Automatic Detection of Generated Text
 Why is it difficult to answer the question “which decoding strategy is best”?
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Why are we interested in systems that
automatically detect generated text?

 Combat the propagation of fake text
* Improve training of text generation models (adversarial training)

* Evaluate the quality of generated text
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Method for Building a Detector

* Train a simple classifier on top of a bag-of-words representation of the text

« Compute a histogram of the token likelihoods P(x, | x;.,_;) over all the tokens in
the text, then train a simple classier on top of the histogram. http://gltr.io/

* Train a neural network to make a prediction given a text sequence
* Train from scratch

* Fine-tune for classification the same language model that was used for generating the
samples

* Fine-tune some other pre-trained language model on the detection classification task.
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Method for Building a Detector

* Train a simple classifier on top of a bag-of-words representation of the text

« Compute a histogram of the token likelihoods P(x, | x;.,_;) over all the tokens in
the text, then train a simple classier on top of the histogram. http://gltr.io/

* Train a neural network to make a prediction given a text sequence
* Train from scratch

* Fine-tune for classification the same language model that was used for generating the
samples

» Fine-tune some other pre-trained language model on the detection classification task.
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Bidirectional Encoder Representations from Transformers (BERT)

Use the output of the 0.1% | Aardvark

masked word’s position
to predict the masked word

Possible classes:
All English words 10% Improvisation

0% | Zyzzyva

FFNN + Softmax

® 0 0
BERT
Randomly mask coo
15% of tokens | | | | | | | |
[CLS] Let’s stick to [MASK] N this skit
Input
[CLS] Let's stick to improvisation in this skit
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http://jalammar.github.io/illustrated-bert/

Method

* | fine-tuned each classifier on ~200,000 excerpts of web text and ~200,000
excerpts of text that were generated by GPT-2.

» Classifiers were trained to perform binary classification: predicting whether
an excerpt was human-written or machine-generated (from GPT-2 XL).

* Intotal, | had 6 datasets, each with ~400,000 examples In it:
* Both with and without priming:

Examples with priming:

[start] Once upon -> a time there was a beautiful ogre.
[start] Today -> is going to be a great day.

Example without priming:

[start] -> Today it is going to rain cats and dogs.
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Method

* | fine-tuned each classifier on ~200,000 excerpts of web text and ~200,000
excerpts of text that were generated by GPT-2.

» Classifiers were trained to perform binary classification: predicting whether
an excerpt was human-written or machine-generated.

* Intotal, | had 6 datasets, each with ~400,000 examples In it:
* Both with and without priming:

One where the machine-generated text was sampled using top-k sampling with k=50

One where the machine-generated text was sampled using nucleus sampling with
P=0.96

One where the P(x,|x;.,_;) returned by the LM was used without modification (I'll
refer too this as p=1.0)
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QUESTIONS OF INTEREST

...................................................................................................................................................................................................

» How does accuracy vary by
sequence length?

100%
95%

90% = —
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70%

65%

60%

55%

50%
0 32 64 96 128 160 192

Sequence length in tokens

—a—k40-1wordcond k40-nowordcond
—e—p0.96-1wordcond —e—p0.96-nowordcond
—e—p1.0-1wordcond p1.0-nowordcond



QUESTIONS OF INTEREST

...................................................................................................................................................................................................

» How does accuracy vary by Accuracy of BERT Fine-tuned Discriminator

sequence length?

100%

95%

» Why are accuracies so much higher 90%
for top-k than the other strategies? 85%

80% /
(0]

65%

Accuracy

N N
2 g
X X

60%
55%

50%
0 32 64 96 128 160 192

Sequence length in tokens

k40-1wordcond k40-nowordcond
—e—p0.96-1wordcond —e—p0.96-nowordcond
—e—p1.0-1wordcond p1.0-nowordcond



QUESTIONS OF INTEREST

» How does accuracy vary by
sequence length?

BN human
B unmodified

: : 35000
» Why are accuracies so much higher
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QUESTIONS OF INTEREST

...................................................................................................................................................................................................

» How does accuracy vary by Accuracy of BERT Fine-tuned Discriminator

sequence length? .
» Why are accuracies so much higher 90%
for top-k than the other strategies? 2%

_ 80% /

» Why are accuracies well above §7s% /

random chance even for very short < 70% «

sequence lengths? 65%
60%
55%
50%

0 32 64 96 128 160 192
Sequence length in tokens

k40-1wordcond k40-nowordcond
—e—p0.96-1wordcond —e—p0.96-nowordcond
—e—p1.0-1wordcond p1.0-nowordcond



CAN YOU DO IT?

Recall that top-k (with £ = 40) means that there are only 40 possible tokens the
language model can generate in the first position.

For each of the following excerpts, predict whether it’'s human-written or machine-
generated, assuming top-k sampling was used.

1. "The cat"




CAN YOU DO IT?

Recall that top-k (with £ = 40) means that there are only 40 possible tokens the
language model can generate in the first position.

For each of the following excerpts, predict whether it’'s human-written or machine-
generated, assuming top-k sampling was used.

1. "The cat"

2. “Felines are”




CAN YOU DO IT?

For each of the following excerpts predict whether it’'s human-written or machine-
generated.

BERT trained on generated text that had no priming would predict....

1. “The cat”
machine-generated
2. “Felines are”
human-written

If we instead primed the language model with a bunch of text for it to continue, the
detection task would be harder because there are more options for the next token.

P(next word | “| am”) vs P(next word | “The monstrous”) look very different.



QUESTIONS OF INTEREST

...................................................................................................................................................................................................

» How does accuracy vary by Accuracy of BERT Fine-tuned Discriminator
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QUESTIONS OF INTEREST

...................................................................................................................................................................................................

» How does accuracy vary by Accuracy of BERT Fine-tuned Discriminator

100%
sequence length?
95%
» Why are accuracies so much higher 90%
for top-k than the other strategies? 2%
_80% /
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sequence lengths? 65%
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QUESTIONS OF INTEREST

» How does accuracy vary by Distribution of First Tokens in Generated Sequences

sequence length? o /
» Why are accuracies so much higher .:

80%
for top-k than the other strategies?

_ € 60%
> Why are accuracies well above 3
random chance even for very short T a0
X
sequence lengths? —— pl.0-lwordcond
o 20% k40-1wordcond
» Why does priming the language —— p0.96-1wordcond
. . — webtext
model with some text make a big 0%
. k? 0 500 1000 1500 2000 2500
difference for top-k* & most comfhoh unique tokens

» Why does top-k look so
different?



TOP-K IS NOT BAD, THE METHODS ARE JUST IMBALANCED

Recall that nucleus sampling chooses a k, at

every sampling step such that the total -
probability of the k, most likely words is as — p0.96-nowordcond

— p0.96-1wordcond
. 4000
close as possible to some constant p.

Mean k& Chosen at each Position during
Generation with Nucleus Sampling

3500

3000

In our experiments we set p = 0.96. This « 2500
meant that most of the time the k, chosen by |

nucleus sampling was a lot bigger than the
constant value of kK = 40 we were using for

our top-k experiments.

2000

1500
1000

500
0 50 100 150 200

Position Iin sequence



OUTLINE

* Decoding Strategy Recap
 Automatic Detection of Generated Text

 Why is it difficult to answer the question “which decoding strategy is
best”?
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Recall that lower accuracy means that humans had a harder time
distinguishing these samples from human-written ones.

80%

75%

70%

65%

60%

Accuracy

55%

50%

45%

40%

Overall Accuracy of Human Raters 30%

75%

70%

65%

60%

Accuracy

55%
50%

45%
—— Overall
40%
32 64 96 128 160 192
Sequence Length in Tokens
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OUR RELATIVE STRENGTHS

Humans are good at detecting: Automatic systems are good at detecting:

» Co-reference errors » Differences in token frequencies

» Contradictions » Differences in the patterns of token
likelihoods

» Falsehoods or statements unlikely to
be true

» |ncorrect uses of a word

» Lack of fluency



TRADEOFFS IN DECODING

Sample from full distribution <> Reduce likelihood of already
low likelihood words

Diversity < Quality

Fool Machines < Fool Humans




CONCLUSIONS

» Even the best language models aren’t good enough at modeling language for us to
sample from the full distribution and not make bad word choices.

» Reducing the weight of words in the tail decreases the chance we’ll make a bad word
choice, but it also reduces the chance we’ll make interesting good word choices.

» Sampling from the tail of LM distributions, but sampling from the tail is necessary to
get diverse text.
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