
TEXT GENERATION
WITH

NEURAL NETWORKS
DAPHNE IPPOLITO

1

OUTLINE

• Neural language model framework

• LM Architectures

• Recurrent neural networks

• Transformers

• Decoding Strategies

• Transformers for natural language understanding

• BERT

• T5

2

OUTLINE

3

• Neural language model framework

• LM Architectures

• Recurrent neural networks

• Transformers

• Decoding Strategies

• Transformers for natural language understanding

• BERT

• T5

WHAT IS A LANGUAGE MODEL?

A language model outputs the probability distribution over the next word given the
previous words in a string.

Historically, language models were statistical. If the word “apple” follows the word
“the” 2% of the times that “the” occurs in the text corpus, then P(“apple” |
“the”) = 0.02.

More recently, we use neural language models, which can condition on much longer
sequences, ie. P(“apple" | “I was about to eat the”). They are also able
to generalize to sequences which are not in the training set.

4

WHAT IS A LANGUAGE MODEL?

Using the chain rule, we can refer to the probability of a sequence of words as the
product of the conditional probability of each word given the words that precede it.

P([“I”, “eat”, “the”, “apple”]) =
P(“apple” | [“I”, “eat”, “the”]) * P(“the” | [“I”, “eat”]) * P(“eat” | [“I”]) * P(“I”])

This is helpful since language models output .P(yt |y1:t−1)

5

A REMINDER ABOUT THE CHAIN RULE

UNCONDITIONED VS CONDITIONED
NEURAL LANGUAGE MODELS

6

Neural language models can either be designed to just predict the next word given the previous ones, or they
can be designed to predict the next word given the previous ones and some additional conditioning sequence.

Unconditioned:
At each step the LM predicts:

Tasks that are usually unconditioned:
• Story generation
• News article generation

P(Y)
P(yt |y1:t−1)

Conditioned:
At each step the LM predicts:

Tasks that are usually conditioned:
• Machine translation
• Abstractive text summarization
• Simplification

P(Y |X)
P(yt |y1:t−1, x1:T)

UNCONDITIONED VS CONDITIONED
NEURAL LANGUAGE MODELS

UncondiWioned LangXage Model

CondiWioned LangXage Model

DecodeU

DecodeUEncodeU

7

Unconditioned neural language models only have a decoder. Conditioned ones have an
encoder and a decoder.

UNCONDITIONED VS CONDITIONED
NEURAL LANGUAGE MODELS

8

Theoretically, any task designed for a decoder-only architecture can be turned into
one for an encoder-decoder architecture, and vice-versa.

Unconditioned (decoder-only) examples

• Once upon a time there lived a beautiful ogre
who ...

• [tag_Title] Truck Overturns on Highway Spilling
Maple Syrup [tag_Body] The truck was ...

• [source] The hippopotamus ate my homework.
[target] ...

• [complex] The incensed hippopotamus consumed my
assignment. [simple] ...

Conditioned (encoder-decoder) examples

• Once upon a time there lived a beautiful ogre who
➡ fell in love with...

• Truck Overturns on Highway Spilling Maple Syrup ➡
The truck was...

• The hippopotamus ate my homework. ➡ ...

• The incensed hippopotamus consumed my assignment.
➡ The angry hippo ate my ...

NEURAL LANGUAGE MODELS

the

a

m\

kitten

Embedding matri[VocabXlar\
YR

ca
b

Vi
]e

ePbeddiQg diPeQViRQ

UncondiWioned LangXage Model

CondiWioned LangXage Model

DecodeU

DecodeUEncodeU

9

The first step of building a neural language model is
constructing a vocabulary of valid tokens.

Each token in the vocabulary is associated with a vector
embedding, and these are concatenated into an embedding
matrix.

NEURAL LANGUAGE MODELS

EQcRdeU

The hippo aWe m\ homeZork

1234220194320
EPbed EPbed EPbed EPbed EPbed

the

a

m\

kitten

Embedding matri[VocabXlar\
YR

ca
b

Vi
]e

ePbeddiQg diPeQViRQ

10

The first step of building a neural language model is
constructing a vocabulary of valid tokens.

Each token in the vocabulary is associated with a vector
embedding, and these are concatenated into an embedding
matrix.

UncondiWioned LangXage Model

CondiWioned LangXage Model

DecodeU

DecodeUEncodeU

The encoder outputs a sequence of hidden states for each token
in the source sequence.

The decoder takes as input the hidden states from the encoder as well as
the embeddings for the tokens seen so far in the target sequence.

NEURAL LANGUAGE MODELS

EQcRdeU

The hippo aWe m\ homeZork

1234220194320
EPbed EPbed EPbed EPbed EPbed

henc
1 henc

T

UncondiWioned LangXage Model

CondiWioned LangXage Model

DecodeU

DecodeUEncodeU

11

DecRdeU

Le KLSSRWaPe

242175
EPbed EPbed

ŷt

NEURAL LANGUAGE MODELS

DecRdeU

Le KLSSRWaPe

242175
EPbed EPbed

ŷt

UncondiWioned LangXage Model

CondiWioned LangXage Model

DecodeU

DecodeUEncodeU

12

Ideally the predicted embedding is close to the
embedding of the true next word.

ŷt

NEURAL LANGUAGE MODELS

DecRdeU

Le KLSSRWaPe

242175
EPbed EPbed

ŷt

UncondiWioned LangXage Model

CondiWioned LangXage Model

DecodeU

DecodeUEncodeU

embedding
matrix

Yocab si]e

=
logiWV

P(Yt = i |x1:T, y1:t−1) =
exp(Eŷt[i])

∑j exp(Eŷt[j])

ŷt

13

embedding
matrix E

Ideally the predicted embedding is close to the embedding of the true next
word.

We multiply the predicted embedding by our vocabulary embedding matrix to
get a score for each vocabulary word. These scores are referred to as logits.

It’s possible to turn the logits into probabilities.

ŷt

NEURAL LANGUAGE MODELS

DecRdeU

Le KLSSRWaPe

242175
EPbed EPbed

ŷt

UncondiWioned LangXage Model

CondiWioned LangXage Model

DecodeU

DecodeUEncodeU

embedding
matrix

Yocab si]e

=
logiWV

P(Yt = i |x1:T, y1:t−1) =
exp(Eŷt[i])

∑j exp(Eŷt[j])

ŷt

embedding
matrix E

14

Ideally the predicted embedding is close to the embedding of the true next
word.

We multiply the predicted embedding by our vocabulary embedding matrix to
get a score for each vocabulary word. These scores are referred to as logits.

It’s possible to turn the logits into probabilities.

ŷt

Also called the
softmax function

LOSS FUNCTION
NEURAL LANGUAGE MODELS

ℒ = −
T

∑
t=1

log P(Yt = i* |x1:T, y1:t−1)

15

The index of the
true th word in the

target sequence.
t

LOSS FUNCTION
NEURAL LANGUAGE MODELS

ℒ = −
T

∑
t=1

log P(Yt = i* |x1:T, y1:t−1)

16

The probability the language
model assigns to the true th
word in the target sequence.

t

LOSS FUNCTION
NEURAL LANGUAGE MODELS

ℒ = −
T

∑
t=1

log P(Yt = i* |x1:T, y1:t−1)

Recall: P(Yt = i |x1:T, y1:t−1) =
exp(Eŷt[i])

∑j exp(Eŷt[j])

= −
T

∑
t=1

log
exp(Eŷt[i*])

∑j exp(Eŷt[j])

17

LOSS FUNCTION
NEURAL LANGUAGE MODELS

ℒ = −
T

∑
t=1

log P(Yt = i* |x1:T, y1:t−1)

Recall: P(Yt = i |x1:T, y1:t−1) =
exp(Eŷt[i])

∑j exp(Eŷt[j])

= −
T

∑
t=1

log
exp(Eŷt[i*])

∑j exp(Eŷt[j])

18

Yocab si]e

=
logiWV

ŷt

embedding
matrix E

Score for word
at index i*

LOSS FUNCTION
NEURAL LANGUAGE MODELS

ℒ = −
T

∑
t=1

log P(Yt = i* |x1:T, y1:t−1)

= −
T

∑
t=1

log
exp(Eŷt[i*])

∑j exp(Eŷt[j])

= −
T

∑
t=1

Eŷt[i*]

19

SAMPLING ALGORITHM
NEURAL LANGUAGE MODELS

UQcRQdLWLRQed LaQgXage MRdeO

CRQdLWLRQed LaQgXage MRdeO

VaPSOLQg
agRULWhP

VaPSOLQg
agRULWhPDecRdeU

chRVeQ ZRUd fRU
SRVLWLRQ t+1

chRVeQ ZRUd fRU
SRVLWLRQ t+1

DecRdeUEQcRdeU

Examples:
• Argmax
• Random sampling
• Beam search

20

At inference time, we need a sampling algorithm that selects a word given the predicted
probability distribution. In theory, we want to choose words so that we maximize or ,
but in practice this is intractable.

P(Y) P(Y |X)

OUTLINE

21

• Neural language model framework

• LM Architectures

• Recurrent neural networks

• Transformers

• Decoding Strategies

• Transformers for natural language understanding

• BERT

• T5

REFERENCED PAPER
RECURRENT NEURAL NETWORKS

22

Yocab si]e

=
probabilities

RNN RNN ...

Decoder

softmax () =

SINGLE LAYER DECODER ARCHITECTURE
RECURRENT NEURAL NETWORKS

The current hidden state is computed as a function of
the previous hidden state and the embedding of the
current word in the target sequence.

The current hidden state is used to predict an
embedding for the next word in the target sequence.

This predicted embedding is used in the loss function:

ht = RNN(Wihyt + Whhht−1 + bh)

̂et = be + Wheht

23

Yocab si]e

=
probabiliWieV

softmax () =

Yocab si]e

=
probabilities

RNN RNN ...

Decoder

softmax () =

SINGLE LAYER DECODER ARCHITECTURE
RECURRENT NEURAL NETWORKS

The current hidden state is computed as a function of
the previous hidden state and the embedding of the
current word in the target sequence.

The current hidden state is used to predict an
embedding for the next word in the target sequence.

This predicted embedding is used in the loss function:

ht = RNN(Wihyt + Whhht−1 + bh)

̂et = be + Wheht

24

Yocab si]e

=
probabiliWieV

softmax () =

Usually the
zero-vector

MULTI-LAYER DECODER ARCHITECTURE
RECURRENT NEURAL NETWORKS

Computing the next hidden state:
For the first layer:

For all subsequent layers:

Predicting an embedding for the next token in the
sequence:

Each of the and are learned bias and weight matrices.

h1
t = RNN(Wih1yt + Wh1h1h1

t−1 + b1
h)

hl
t = RNN(Wihlyt + Whl−1hlhl−1

t + Whlhlhl
t−1 + bl

h)

̂et = be +
L

∑
l=1

Whlehl
t

b W

25

RNN
L1

RNN
L1

RNN
L2

RNN
L2

...

...

.........DHcRGHU

WHAT IS THE “RNN” UNIT?
RECURRENT NEURAL NETWORK

26

RNN ?

WHAT IS THE “RNN” UNIT?
RECURRENT NEURAL NETWORK

27

LSTM stands for long short-term memory.

An LSTM uses a gating concept to control how much
each position in the hidden state vector can be
updated at each step.

LSTMs were originally designed as a mean to keep
around information for longer in the hidden state as it
gets repeatedly updated.

RNNLSTM

GENERATED TEXT CIRCA 2015
RECURRENT NEURAL NETWORKS

28

GENERATED TEXT CIRCA 2015
RECURRENT NEURAL NETWORKS

29

VOCABULARY STRATEGIES
RECURRENT NEURAL NETWORKS

• Smaller vocab size
• Few to no out-of-vocabulary

tokens

• Larger vocab size
• Greater potential for out-of-

vocabulary tokens
• Tokens have more semantic

meaning

30

ENCODER-DECODER ARCHITECTURES
RECURRENT NEURAL NETWORKS

How do we connect the encoder with the decoder?

31

EQcRdeU

The hippo aWe m\ homeZork

1234220194320
EPbed EPbed EPbed EPbed EPbed

henc
1 henc

T

DecRdeU

Le KLSSRWaPe

242175
EPbed EPbed

ENCODER-DECODER ARCHITECTURES
RECURRENT NEURAL NETWORKS

Simplest approach: Use the final hidden
state from the encoder to initialize the
first hidden state of the decoder.

32

RNN RNN ...

EncRdeU

RNN RNN ...

DecodeU

ENCODER-DECODER ARCHITECTURES
RECURRENT NEURAL NETWORKS

Better approach: an attention mechanism

33

[The, hippopotamus, ...

[L’, hippopotame, a, mangé, mes, devoirs]

When predicting the next English
word, how much weight should the
model put on each French word in
the source sequence?

Tr
an

sl
at

e
Fr

 t
o

En

Better approach: an attention mechanism

[The, hippopotamus, ...

[L’, hippopotame, a, mangé, mes, devoirs]

ENCODER-DECODER ARCHITECTURES
RECURRENT NEURAL NETWORKS

34

CRPSXWe a liQeaU cRPbiQaWiRQ Rf Whe eQcRdeU hiddeQ VWaWeV.

DecRdeU'V SUedicWiRQ aW SRViWiRQ t iV baVed RQ bRWh Whe cRQWe[W
YecWRU aQd Whe hiddeQ VWaWe RXWSXWWed b\ Whe RNN aW WhaW SRViWiRQ.Tr

an
sl

at
e

Fr
 t

o
En

ENCODER-DECODER ARCHITECTURES
RECURRENT NEURAL NETWORKS

The th context vector is computed as .

The context and encoder hidden state can be concatenated
together and passed through a small feed-forward network which
predicts an output embedding for position .

t ct = Hencαt

i

̂et = fθ([ct; hdec
t])

35

CRPSXWe a liQeaU cRPbiQaWiRQ Rf Whe eQcRdeU hiddeQ VWaWeV.

DecRdeU'V SUedicWiRQ aW SRViWiRQ t iV baVed RQ bRWh Whe cRQWe[W
YecWRU aQd Whe hiddeQ VWaWe RXWSXWWed b\ Whe RNN aW WhaW SRViWiRQ.

The th context vector is computed as .

But how do we compute the ?

There are a few different options for the attention score:

t ct = Hencαt

αt

αt[i] = softmax(att_score(hdec
t , henc

i))

att_score(hdec
t , henc

i) =

hdec
t ⋅ henc

i dot product

hdec
t Wahenc

i bilinear function

w⊤
a1 tanh (Wa2[hdec

t , henc
i]) MLP

ENCODER-DECODER ARCHITECTURES
RECURRENT NEURAL NETWORKS

36

Foreshadowing: This is
the score that will be
used in the Transformer.

CRPSXWe a liQeaU cRPbiQaWiRQ Rf Whe eQcRdeU hiddeQ VWaWeV.

DecRdeU'V SUedicWiRQ aW SRViWiRQ t iV baVed RQ bRWh Whe cRQWe[W
YecWRU aQd Whe hiddeQ VWaWe RXWSXWWed b\ Whe RNN aW WhaW SRViWiRQ.

LIMITATIONS
RECURRENT NEURAL NETWORKS

• Recurrent neural networks are slow to train. The computation at position t is
dependent on first doing the computation at position t-1.

• LSTMs were design to keep important information in the hidden state’s memory for
longer (than simpler RNN units). However they are still not great at this.
• If two tokens are K positions apart, there are K opportunities for knowledge of the first token to be erased

from the hidden state before a prediction is made at the position of the second token.

• To combat the forgetting, encoder networks are often bidirectional: one LSTM runs
through the sequence left-to-right, and another runs through right-to-left. The
outputs are concatenated.
• This is a kludge rather than a real solution.

37

OUTLINE

38

• Neural language model framework

• LM Architectures

• Recurrent neural networks

• Transformers

• Decoding Strategies

• Transformers for natural language understanding

• BERT

• T5

REFERENCED PAPER
TRANSFORMERS

39

“ATTENTION IS ALL YOU NEED”
TRANSFORMERS

40

The Transformer is a non-recurrent non-
convolutional neural network designed for
language understanding that introduces self-
attention in addition to encoder-decoder
attention.

“ATTENTION IS ALL YOU NEED”
TRANSFORMERS

41

The Transformer: A feed-forward neural network
designed for language understanding.

Encoder

“ATTENTION IS ALL YOU NEED”
TRANSFORMERS

42

The Transformer: A feed-forward neural network
designed for language understanding.

Decoder

“ATTENTION IS ALL YOU NEED”
TRANSFORMERS

43

The Transformer: A feed-forward neural network
designed for language understanding.

Yocab si]e

=
logiWV

P(Yt = i |x1:T, y1:t−1) =
exp(Eŷt[i])

∑j exp(Eŷt[j])

ŷt

embedding
matrix E

THE ATTENTION MECHANISM
TRANSFORMERS

44

Multi-Head
Attention

MULTI-HEAD ATTENTION
TRANSFORMERS

45

Self-attention between a sequence
of hidden states and that same
sequence of hidden states.

Multi-Head
Attention

MULTI-HEAD ATTENTION
TRANSFORMERS

46

Encoder-decoder attention, like what has
been standard in recurrent seq2seq models.

Multi-Head
Attention

THE ATTENTION MECHANISM
TRANSFORMERS

47

Multi-Head
Attention

Scaled Dot-Product Attention

The scaled-dot product attention mechanism is almost
identical to the one we learned about in the previous
section. However, we’ll reformulate it in terms of matrix
multiplications.

The in the denominator is there to prevent the dot
product from getting too big.

The query: Q ∈ RT×dk

The key: K ∈ RT′ ×dk

The value: V ∈ RT×dv

Attention(Q, K, V) = softmax (QKT

dk) V

dk

SCALED DOT-PRODUCT ATTENTION
TRANSFORMERS

48

Scaled Dot-Product

This is the α vector from
the previous formulation.

The scaled-dot product attention mechanism is almost
identical to the one we learned about in the previous
section. However, we’ll reformulate it in terms of matrix
multiplications.

The in the denominator is there to prevent the dot
product from getting too big.

The query: Q ∈ RT′ ×dk

The key: K ∈ RT×dk

The value: V ∈ RT×dv

Attention(Q, K, V) = softmax (QKT

dk) V

dk

SCALED DOT-PRODUCT ATTENTION
TRANSFORMERS

49

Scaled Dot-Product

This is the dot-product
scoring function we saw
in the previous section.

My attempt at an English translation:
• For each of the vectors in Q, the query matrix, take a linear sum of the

vectors in V, the value matrix.
• The amount to weigh each vector in V is dependent on how “similar”

that vector is to the query vector.
• “Similar” is measured in terms of the dot product between the

vectors.

For encoder-decoder attention:
Keys and values come from encoder’s final output.
Queries come from the previous decoder layer’s outputs.

For self-attention:
Keys, queries, and values all come from the outputs of the previous
layer.

Attention(Q, K, V) = softmax (QKT

dk) V

SCALED DOT-PRODUCT ATTENTION
TRANSFORMERS

50

Scaled Dot-Product

Instead of operating on directly, the
mechanism projects each input into a smaller
dimension. This is done times. The attention
operation is performed on each of these “heads,”
and the results are concatenated.

Multi-head attention allows the model to jointly
attend to information from different representation
subspaces at different positions.

Attention(Q, K, V) = softmax (QKT

dk) V

MultiHeadAtt(Q, K, V) = Concat(head1, . . . , headh)WO

where headi = Attention(QWQ
i , KWK

i , VWV
i)

Q, K, and V

h

MULTI-HEAD ATTENTION
TRANSFORMERS

51

Multi-Head
Attention

MULTI-HEAD ATTENTION
TRANSFORMERS

52

Multi-Head
Attention

Input-Input Layer5

The
Law
will
never
be
perfect
,
but
its
application
should
be
just
-
this
is
what
we
are
missing
,
in
my
opinion
.
<EOS>
<pad>

The
Law
will

never
be

perfect
,

but
its

application
should

be
just
-

this
is

what
we
are

missing
,
in
my

opinion
.

<EOS>
<pad>

Input-Input Layer5

The
Law
will
never
be
perfect
,
but
its
application
should
be
just
-
this
is
what
we
are
missing
,
in
my
opinion
.
<EOS>
<pad>

The
Law
will

never
be

perfect
,

but
its

application
should

be
just
-

this
is

what
we
are

missing
,
in
my

opinion
.

<EOS>
<pad>

Two different self-attention heads:

The input into the encoder looks like:

INPUTS TO THE ENCODER
TRANSFORMERS

53

= token embeddings + position embeddings

+
Position Embeddings: Token Embeddings:

THE ENCODER
TRANSFORMERS

54

= MultiHeadAtt(, ,)Henc
i Henc

i Henc
i

Multi-Head
Attention

THE ENCODER
TRANSFORMERS

55

= MultiHeadAtt(, ,)Henc
i Henc

i Henc
i

Multi-Head
Attention

Add & Norm = LayerNorm(+) Henc
i

Multi-Head
Attention

THE ENCODER
TRANSFORMERS

56

= MultiHeadAtt(, ,)Henc
i Henc

i Henc
i

Multi-Head
Attention

Add & Norm = LayerNorm(+) Henc
i

Multi-Head
Attention

= max(0, W1 + b1)W2 + b2
Feed

Forward Add & Norm

Feed
Forward <=>

THE ENCODER
TRANSFORMERS

57

= MultiHeadAtt(, ,)Henc
i Henc

i Henc
i

Multi-Head
Attention

Add & Norm = LayerNorm(+)Henc
i

Multi-Head
Attention

= max(0, W1 + b1)W2 + b2
Feed

Forward Add & Norm

Add & Norm (2) = LayerNorm(+)Henc
i

Feed
Forward

=Henc
i+1 Add & Norm (2)

THE DECODER
TRANSFORMERS

58

= token embeddings + position embeddings

+

THE DECODER
TRANSFORMERS

59

= MaskedMultiHeadAtt(, ,)Hdec
i Hdec

i Hdec
i

Masked Multi-
Head Attention

THE DECODER
TRANSFORMERS

60

= MaskedMultiHeadAtt(, ,)Hdec
i Hdec

i Hdec
i

Masked Multi-
Head Attention

Add & Norm = LayerNorm(+)Hdec
i

Multi-Head
Attention

THE DECODER
TRANSFORMERS

61

= MaskedMultiHeadAtt(, ,)Hdec
i Hdec

i Hdec
i

Masked Multi-
Head Attention

Add & Norm Multi-Head
Attention

= MultiHeadAtt(, ,)Henc
i Hdec

i Hdec
i

Enc-Dec Multi-
Head Attention

= LayerNorm(+)Hdec
i

THE DECODER
TRANSFORMERS

62

= MaskedMultiHeadAtt(, ,)Hdec
i Hdec

i Hdec
i

Masked Multi-
Head Attention

Add & Norm Multi-Head
Attention

Add & Norm (2)

Enc-Dec Multi-
Head Attention = MultiHeadAtt(, ,)Hdec

i Henc
i Henc

i

Multi-Head
Attention

= LayerNorm(+)Hdec
i

= LayerNorm(+)Add & Norm

THE DECODER
TRANSFORMERS

63

= MaskedMultiHeadAtt(, ,)Hdec
i Hdec

i Hdec
i

Masked Multi-
Head Attention

Add & Norm Multi-Head
Attention

Add & Norm (2)

Enc-Dec Multi-
Head Attention = MultiHeadAtt(, ,)Hdec

i Henc
i Henc

i

= LayerNorm(+)Multi-Head
Attention Add & Norm

Add & Norm (3) = LayerNorm(+)Feed
Forward

=Hdec
i+1

Add & Norm (3)

= max(0, W1 + b1)W2 + b2
Feed

Forward Add & Norm (2)

Add & Norm (2)

= LayerNorm(+)Hdec
i

GENERATED TEXT CIRCA 2018
TRANSFORMERS

64 Credit: Generating Wikipedia by Summarizing Long Sequences <https://arxiv.org/abs/1801.10198>

https://arxiv.org/abs/1801.10198

TAKEAWAYS

• Relative attention enables Transformer to generate longer sequences than it was trained
on.
• “Self-Attention with Relative Position Representations” <https://arxiv.org/abs/1803.02155>

• Massive multi-GPU parallelization allows training giant language models (Microsoft just
released one with 17 billion parameters).
• https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

• Distillation allows smaller models to be formed from bigger ones.
• “Distilling Transformers into Simple Neural Networks with Unlabeled Transfer Data” <https://arxiv.org/abs/

1910.01769>

• Lots of attempts to make sparse attention mechanisms work.
• “Efficient Content-Based Sparse Attention with Routing Transformers” <https://openreview.net/forum?

id=B1gjs6EtDr>

• “Reformer: The Efficient Transformer” <https://arxiv.org/abs/2001.04451>
65

EXTENSIONS TO TRANSFORMER ARCHITECTURE

https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/1910.01769
https://arxiv.org/abs/1910.01769
https://openreview.net/forum?id=B1gjs6EtDr
https://openreview.net/forum?id=B1gjs6EtDr
https://arxiv.org/abs/2001.04451

OUTLINE

• Neural language model framework

• LM Architectures

• Recurrent neural networks

• Transformers

• Decoding Strategies

• Transformers for natural language understanding

• BERT

• T5

66

OUTLINE
• Decoding Strategy Recap
• Automatic Detection of Generated Text
• Why is it difficult to answer the question “which decoding strategy is best”?

67

Recall that language models output a probability
distribution P(Yt = i |y1:t−1)

Unconditioned Language Model

Conditioned Language Model

DecoderEncoderx1, ..., xT P(Yi+1=v)

y1, ..., yL

sampling
agorithm yL+1Decodery1, ..., yL P(Yi+1=v)

sampling
agorithm yL+1

68

Recall that using the chain rule, we can refer to the probability of a sequence
of words as the product of the conditional probability of each word given the
words that precede it.

P([“I”, “eat”, “the”, “apple”]) =
P(“apple” | [“I”, “eat”, “the”]) * P(“the” | [“I”, “eat”]) * P(“eat” | [“I”]) * P([“I”])

Actually maximizing is intractable, so we try to approximate
doing so when choosing a next token based on the
outputted by the LM.

P(y1, …, yT)
P(Yt = i |y1:t−1)

However, we’re most interested in finding the most likely
overall sequence .P(y1, …, yT)

69

How can we sample from ?P(Yt = i |y1:t−1)

Example:
Suppose our vocal consists of 4 words:

We have primed our language “apple apple” and
want to use it to make a predict for the 3rd word in
the sequence.

Our language model predicts:

If we sample with argmax, what word would get
selected?

𝒱 = {apple, banana, orange, plum}

P(Y3 = apple |Y1 = apple, Y2 = apple) = 0.05
P(Y3 = banana |Y1 = apple, Y2 = apple) = 0.65
P(Y3 = orange |Y1 = apple, Y2 = apple) = 0.2
P(Y3 = plum |Y1 = apple, Y2 = apple) = 0.1

Option 1: Take arg max
i

P(Yt = i |y1:t−1)

70

How can we sample from ?P(Yt = i |y1:t−1)

Option 1: Take

Option 2: Randomly sample from the distribution
returned by the model.

arg max
i

P(Yt = i |y1:t−1) Example:
Suppose our vocal consists of 4 words:

We have primed our language “apple apple” and
want to use it to make a predict for the 3rd word in
the sequence.

Our language model predicts:

If we use random sampling, what is the probability
that “plum” will get chosen as the third word?

𝒱 = {apple, banana, orange, plum}

P(Y3 = apple |Y1 = apple, Y2 = apple) = 0.05
P(Y3 = banana |Y1 = apple, Y2 = apple) = 0.65
P(Y3 = orange |Y1 = apple, Y2 = apple) = 0.2
P(Y3 = plum |Y1 = apple, Y2 = apple) = 0.1

71

How can we sample from ?P(Yt = i |y1:t−1)

Option 1: Take

Option 2: Randomly sample from the distribution
returned by the model.

arg max
i

P(Yt = i |y1:t−1)

Problem with Random Sampling
Most tokens in the vocabulary get assigned very
low probabilities but cumulatively, choosing any
one of these low-probability tokens becomes
pretty likely. In the example on the right, there is
over a 17% chance of choosing a token with

.P(Yt = i) ≤ 0.01

72

How do we sample from ?P(Yt = i |y1:t−1)

Option 1: Take

Option 2: Randomly sample from the distribution
returned by the model.

arg max
i

P(Yt = i |y1:t−1)

Problem with Random Sampling
Most tokens in the vocabulary get assigned very
low probabilities but cumulatively, choosing any
one of these low-probability tokens becomes
pretty likely. In the example on the right, there is
over a 17% chance of choosing a token with

.P(Yt = i) ≤ 0.01

Solution: modify the distribution returned by the
model to make the tokens In the tail less likely.

73

How do we sample from ?P(Yt = i |y1:t−1)

Option 1: Take

Option 2: Randomly sample from the distribution
returned by the model.

Option 3: Randomly sample with temperature.

arg max
i

P(Yt = i |y1:t−1)

P(Yt = i) =
exp(zi/T)

∑j exp(zj/T)

74

How do we sample from ?P(Yt = i |y1:t−1)

Option 1: Take

Option 2: Randomly sample from the distribution
returned by the model.

Option 3: Randomly sample with temperature.

arg max
i

P(Yt = i |y1:t−1)

75

How do we sample from ?P(Yt = i |y1:t−1)

Option 1: Take

Option 2: Randomly sample from the distribution
returned by the model.

Option 3: Randomly sample with temperature.

arg max
i

P(Yt = i |y1:t−1) Example:
Suppose our vocal consists of 4 words:

We have primed our language “apple apple” and
want to use it to make a predict for the 3rd word in
the sequence.

Our language model predicts:

What would the probability of selecting “banana”
be if we use temperature sampling and set

?

𝒱 = {apple, banana, orange, plum}

P(Y3 = apple |Y1 = apple, Y2 = apple) = 0.05
P(Y3 = banana |Y1 = apple, Y2 = apple) = 0.65
P(Y3 = orange |Y1 = apple, Y2 = apple) = 0.2
P(Y3 = plum |Y1 = apple, Y2 = apple) = 0.1

T = ∞

P(Yt = i) =
exp(zi /T)

∑j exp(zj /T)

76

How do we sample from ?P(Yt = i |y1:t−1)

Option 1: Take

Option 2: Randomly sample from the distribution
returned by the model.

Option 3: Randomly sample with temperature.

arg max
i

P(Yt = i |y1:t−1) Example:
Suppose our vocal consists of 4 words:

We have primed our language “apple apple” and
want to use it to make a predict for the 3rd word in
the sequence.

Our language model predicts:

What would the probability of selecting “banana”
be if we use temperature sampling and set

?

Answer: 0.25

𝒱 = {apple, banana, orange, plum}

P(Y3 = apple |Y1 = apple, Y2 = apple) = 0.05
P(Y3 = banana |Y1 = apple, Y2 = apple) = 0.65
P(Y3 = orange |Y1 = apple, Y2 = apple) = 0.2
P(Y3 = plum |Y1 = apple, Y2 = apple) = 0.1

T = ∞

P(Yt = i) =
exp(zi /T)

∑j exp(zj /T)

77

How do we sample from ?P(Yt = i |y1:t−1)

Option 1: Take

Option 2: Randomly sample from the distribution
returned by the model.

Option 3: Randomly sample with temperature.

arg max
i

P(Yt = i |y1:t−1) Example:
Suppose our vocal consists of 4 words:

We have primed our language “apple apple” and
want to use it to make a predict for the 3rd word in
the sequence.

Our language model predicts:

What would the probability of selecting “banana”
be if we use temperature sampling and set

?

𝒱 = {apple, banana, orange, plum}

P(Y3 = apple |Y1 = apple, Y2 = apple) = 0.05
P(Y3 = banana |Y1 = apple, Y2 = apple) = 0.65
P(Y3 = orange |Y1 = apple, Y2 = apple) = 0.2
P(Y3 = plum |Y1 = apple, Y2 = apple) = 0.1

T = 0.00001

P(Yt = i) =
exp(zi /T)

∑j exp(zj /T)

78

How do we sample from ?P(Yt = i |y1:t−1)

Option 1: Take

Option 2: Randomly sample from the distribution
returned by the model.

Option 3: Randomly sample with temperature.

arg max
i

P(Yt = i |y1:t−1) Example:
Suppose our vocal consists of 4 words:

We have primed our language “apple apple” and
want to use it to make a predict for the 3rd word in
the sequence.

Our language model predicts:

What would the probability of selecting “banana”
be if we use temperature sampling and set

?

Answer: 1.0

𝒱 = {apple, banana, orange, plum}

P(Y3 = apple |Y1 = apple, Y2 = apple) = 0.05
P(Y3 = banana |Y1 = apple, Y2 = apple) = 0.65
P(Y3 = orange |Y1 = apple, Y2 = apple) = 0.2
P(Y3 = plum |Y1 = apple, Y2 = apple) = 0.1

T = 0.00001

P(Yt = i) =
exp(zi /T)

∑j exp(zj /T)

As approaches 0, random sampling with
temperature looks more and more like
argmax.

T

79

How do we sample from ?P(Yt = i |y1:t−1)

Option 1: Take

Option 2: Randomly sample from the distribution
returned by the model.

Option 3: Randomly sample with temperature.

Option 4: Introduce sparsity by reassigning all
probability mass to the most likely tokens. This is
referred to as top- sampling.

arg max
i

P(Yt = i |y1:t−1)

k
k

Usually between 10 and 50 is selected.k

80

How do we sample from ?P(Yt = i |y1:t−1)

Option 1: Take

Option 2: Randomly sample from the distribution
returned by the model.

Option 3: Randomly sample with temperature.

Option 4: Introduce sparsity by reassigning all
probability mass to the most likely tokens. This is
referred to as top- sampling.

Option 5: Reassign all probability mass to the most
likely tokens, where is automatically selected at
every step. It is chosen such that the total probability
of the most likely tokens is no greater than a desired
probability This is referred to as nucleus sampling.

arg max
i

P(Yt = i |y1:t−1)

k
k

kt
kt

kt
p .

81

How do we sample from ?P(Yt = i |y1:t−1)

Option 1: Take

Option 2: Randomly sample from the distribution
returned by the model.

Option 3: Randomly sample with temperature.

Option 4: Introduce sparsity by reassigning all
probability mass to the most likely tokens. This is
referred to as top- sampling.

Option 5: Reassign all probability mass to the most
likely tokens, where is automatically selected at
every step. It is chosen such that the total probability
of the most likely tokens is no greater than a desired
probability This is referred to as nucleus sampling.

Option 6: Use some version of beam search.

arg max
i

P(Yt = i |y1:t−1)

k
k

kt
kt

kt
p .

82

Beam search operates under the assumption
that the best possible sequence to generate is

the one with lowest overall sequence likelihood.

83

Greedy search methods do not always lead to the
most likely output.

Figure 22: A search graph where greedy search fails.

Figure 23: An example of beam search with b = 2. Numbers next to arrows are log probabil-
ities for a single word logP (et|F, et�1

1), while numbers above nodes are log probabilities for
the entire hypothesis up until this point.

48

e
1

P(e
1
|F)

<s>

“a”

“b”

</s>

“a”

“b”

</s>

“a”

“b”

</s>

</s>

</s>

</s>

</s>

e
2

P(e
2
|F,e

1
) e

3
P(e

3
|F,e

1
,e
2
)e

0

0.35

0.4

0.25

0.15

0.8

0.1

0.5

0.4 1.0

1.0

0.05

1.0

1.0

Figure 22: A search graph where greedy search fails.

Figure 23: An example of beam search with b = 2. Numbers next to arrows are log probabil-
ities for a single word logP (et|F, et�1

1), while numbers above nodes are log probabilities for
the entire hypothesis up until this point.

48

Vocabulary = {a, b, </s>}
Numbers above each edge are the transition
probabilities P(xt |x1:t−t)

Question:
If we were to decode with argmax what
would be the generated sequence?
[a, b, </s>]
[a, a, </s>]
[b, b, </s>]
[b, a, </s>]

84

Greedy search methods do not always lead to the
most likely output.

Figure 22: A search graph where greedy search fails.

Figure 23: An example of beam search with b = 2. Numbers next to arrows are log probabil-
ities for a single word logP (et|F, et�1

1), while numbers above nodes are log probabilities for
the entire hypothesis up until this point.

48

e
1

P(e
1
|F)

<s>

“a”

“b”

</s>

“a”

“b”

</s>

“a”

“b”

</s>

</s>

</s>

</s>

</s>

e
2

P(e
2
|F,e

1
) e

3
P(e

3
|F,e

1
,e
2
)e

0

0.35

0.4

0.25

0.15

0.8

0.1

0.5

0.4 1.0

1.0

0.05

1.0

1.0

Figure 22: A search graph where greedy search fails.

Figure 23: An example of beam search with b = 2. Numbers next to arrows are log probabil-
ities for a single word logP (et|F, et�1

1), while numbers above nodes are log probabilities for
the entire hypothesis up until this point.

48

Vocabulary = {a, b, </s>}
Numbers above each edge are the transition
probabilities P(xt |x1:t−t)

Question:
If we were to decode with argmax what
would be the generated sequence?
[a, b, </s>]
[a, a, </s>]
[b, b, </s>]
[b, a, </s>]

85

Greedy search methods do not always lead to the
most likely output.

Figure 22: A search graph where greedy search fails.

Figure 23: An example of beam search with b = 2. Numbers next to arrows are log probabil-
ities for a single word logP (et|F, et�1

1), while numbers above nodes are log probabilities for
the entire hypothesis up until this point.

48

e
1

P(e
1
|F)

<s>

“a”

“b”

</s>

“a”

“b”

</s>

“a”

“b”

</s>

</s>

</s>

</s>

</s>

e
2

P(e
2
|F,e

1
) e

3
P(e

3
|F,e

1
,e
2
)e

0

0.35

0.4

0.25

0.15

0.8

0.1

0.5

0.4 1.0

1.0

0.05

1.0

1.0

Figure 22: A search graph where greedy search fails.

Figure 23: An example of beam search with b = 2. Numbers next to arrows are log probabil-
ities for a single word logP (et|F, et�1

1), while numbers above nodes are log probabilities for
the entire hypothesis up until this point.

48

Vocabulary = {a, b, </s>}
Numbers above each edge are the transition
probabilities P(xt |x1:t−t)

Question:
If we were to decode the sequence that
optimally maximizes , what
would be the generated sequence?
[a, b, </s>]
[a, a, </s>]
[b, b, </s>]
[b, a, </s>]

P(x1, …, xT)

86

Greedy search methods do not always lead to the
most likely output.

Figure 22: A search graph where greedy search fails.

Figure 23: An example of beam search with b = 2. Numbers next to arrows are log probabil-
ities for a single word logP (et|F, et�1

1), while numbers above nodes are log probabilities for
the entire hypothesis up until this point.

48

e
1

P(e
1
|F)

<s>

“a”

“b”

</s>

“a”

“b”

</s>

“a”

“b”

</s>

</s>

</s>

</s>

</s>

e
2

P(e
2
|F,e

1
) e

3
P(e

3
|F,e

1
,e
2
)e

0

0.35

0.4

0.25

0.15

0.8

0.1

0.5

0.4 1.0

1.0

0.05

1.0

1.0

Figure 22: A search graph where greedy search fails.

Figure 23: An example of beam search with b = 2. Numbers next to arrows are log probabil-
ities for a single word logP (et|F, et�1

1), while numbers above nodes are log probabilities for
the entire hypothesis up until this point.

48

Vocabulary = {a, b, </s>}
Numbers above each edge are the transition
probabilities P(xt |x1:t−t)

Question:
If we were to decode the sequence that
optimally maximizes , what
would be the generated sequence?
[a, b, </s>]
[a, a, </s>]
[b, b, </s>]
[b, a, </s>]

P(x1, …, xT)

87

Beam search is an algorithm that explores multiple possible
output sequences to find the overall most likely one.

Figure 22: A search graph where greedy search fails.

log P(e
1
|F)

<s>

“a”

“b”

</s>

“a”

“b”

</s>

“a”

“b”

</s>

</s>

</s>

log P(e
2
|F,e

1
) log P(e

3
|F,e

1
,e

2
)

-1.05

-0.92

-1.39

-1.90

-0.22

-2.30

-0.69

-0.92

0

-3.00

0

-1.05

-0.92

-1.39

X

-2.95

-1.27

-4.05

-1.84

-1.61

-3.22

X

X

X

X
-1.27

-1.61

Figure 23: An example of beam search with b = 2. Numbers next to arrows are log probabil-
ities for a single word logP (et|F, et�1

1), while numbers above nodes are log probabilities for
the entire hypothesis up until this point.

48

Vocabulary = {a, b, </s>}
Numbers above the boxes are

Numbers shown on edges are
Recall that minimizing log probability is
equivalent to maximizing probability.

Suppose we use beam search with a beam
size of 2.

log P(xt |x1:t−1)
log P(x1, …, xt)

88

Beam search is an algorithm that explores multiple possible
output sequences to find the overall most likely one.

Figure 22: A search graph where greedy search fails.

log P(e
1
|F)

<s>

“a”

“b”

</s>

“a”

“b”

</s>

“a”

“b”

</s>

</s>

</s>

log P(e
2
|F,e

1
) log P(e

3
|F,e

1
,e

2
)

-1.05

-0.92

-1.39

-1.90

-0.22

-2.30

-0.69

-0.92

0

-3.00

0

-1.05

-0.92

-1.39

X

-2.95

-1.27

-4.05

-1.84

-1.61

-3.22

X

X

X

X
-1.27

-1.61

Figure 23: An example of beam search with b = 2. Numbers next to arrows are log probabil-
ities for a single word logP (et|F, et�1

1), while numbers above nodes are log probabilities for
the entire hypothesis up until this point.

48

Vocabulary = {a, b, </s>}
Numbers above the boxes are

Numbers shown on edges are
Recall that minimizing log probability is
equivalent to maximizing probability.

Suppose we use beam search with a beam
size of 2.

log P(xt |x1:t−1)
log P(x1, …, xt)

Score each path and
keep the top 2

89

Beam search is an algorithm that explores multiple possible
output sequences to find the overall most likely one.

Figure 22: A search graph where greedy search fails.

log P(e
1
|F)

<s>

“a”

“b”

</s>

“a”

“b”

</s>

“a”

“b”

</s>

</s>

</s>

log P(e
2
|F,e

1
) log P(e

3
|F,e

1
,e

2
)

-1.05

-0.92

-1.39

-1.90

-0.22

-2.30

-0.69

-0.92

0

-3.00

0

-1.05

-0.92

-1.39

X

-2.95

-1.27

-4.05

-1.84

-1.61

-3.22

X

X

X

X
-1.27

-1.61

Figure 23: An example of beam search with b = 2. Numbers next to arrows are log probabil-
ities for a single word logP (et|F, et�1

1), while numbers above nodes are log probabilities for
the entire hypothesis up until this point.

48

Vocabulary = {a, b, </s>}
Numbers above the boxes are

Numbers shown on edges are
Recall that minimizing log probability is
equivalent to maximizing probability.

Suppose we use beam search with a beam
size of 2.

log P(xt |x1:t−1)
log P(x1, …, xt)

Score each path and
keep the top 2

90

Beam search is an algorithm that explores multiple possible
output sequences to find the overall most likely one.

Figure 22: A search graph where greedy search fails.

log P(e
1
|F)

<s>

“a”

“b”

</s>

“a”

“b”

</s>

“a”

“b”

</s>

</s>

</s>

log P(e
2
|F,e

1
) log P(e

3
|F,e

1
,e

2
)

-1.05

-0.92

-1.39

-1.90

-0.22

-2.30

-0.69

-0.92

0

-3.00

0

-1.05

-0.92

-1.39

X

-2.95

-1.27

-4.05

-1.84

-1.61

-3.22

X

X

X

X
-1.27

-1.61

Figure 23: An example of beam search with b = 2. Numbers next to arrows are log probabil-
ities for a single word logP (et|F, et�1

1), while numbers above nodes are log probabilities for
the entire hypothesis up until this point.

48

Vocabulary = {a, b, </s>}
Numbers above the boxes are

Numbers shown on edges are
Recall that minimizing log probability is
equivalent to maximizing probability.

Suppose we use beam search with a beam
size of 2.

log P(xt |x1:t−1)
log P(x1, …, xt)

Score each path and
keep the top 2

91

Beam search is an algorithm that explores multiple possible
output sequences to find the overall most likely one.

Figure 22: A search graph where greedy search fails.

log P(e
1
|F)

<s>

“a”

“b”

</s>

“a”

“b”

</s>

“a”

“b”

</s>

</s>

</s>

log P(e
2
|F,e

1
) log P(e

3
|F,e

1
,e

2
)

-1.05

-0.92

-1.39

-1.90

-0.22

-2.30

-0.69

-0.92

0

-3.00

0

-1.05

-0.92

-1.39

X

-2.95

-1.27

-4.05

-1.84

-1.61

-3.22

X

X

X

X
-1.27

-1.61

Figure 23: An example of beam search with b = 2. Numbers next to arrows are log probabil-
ities for a single word logP (et|F, et�1

1), while numbers above nodes are log probabilities for
the entire hypothesis up until this point.

48

Vocabulary = {a, b, </s>}
Numbers above the boxes are

Numbers shown on edges are
Recall that minimizing log probability is
equivalent to maximizing probability.

Suppose we use beam search with a beam
size of 2.

log P(xt |x1:t−1)
log P(x1, …, xt)

Score each path and
keep the top 2

92

Problems with Beam Search
• It turns out for open-ended tasks like

dialog or story generation, optimizing
for the sequence with the highest
possible isn’t actually a
great idea.

P(x1, …, xT)

93

Problems with Beam Search
• It turns out for open-ended tasks like

dialog or story generation, optimizing
for the sequence with the highest
possible isn’t actually a
great idea.
• Beam search generates text with a

very different distribution of
sequence likelihoods than human-
written text.

P(x1, …, xT)

94

Problems with Beam Search
• It turns out for open-ended tasks like

dialog or story generation, optimizing
for the sequence with the highest
possible isn’t actually a
great idea.
• Beam search generates text with a

very different distribution of
sequence likelihoods than human-
written text.

• When sequence likelihood is too
high, humans rate the text as bad.

P(x1, …, xT)

95

Diverse Beam Search Algorithms
• For a long time, people tried to improve beam to make it produce more diverse text.

Methods included:
• Restrict the set of hypotheses that get considered at each step.

96

Diverse Beam Search Algorithms
• For a long time, people tried to improve beam to make it produce more diverse text.

Methods included:
• Restrict the set of hypotheses that get considered at each step.
• Incorporate diversity into the scoring function used to rank the current hypothesis set.

97

Diverse Beam Search Algorithms
• For a long time, people tried to improve beam to make it produce more diverse text.

Methods included:
• Restrict the set of hypotheses that get considered at each step.
• Incorporate diversity into the scoring function used to rank the current hypothesis set.
• Add noise to the model weights to encourage diversity

98

When to use standard beam search:
• Your domain is relatively closed (for

example, machine translation)
• Your language model is not very good

(you don’t trust the it
returns)

When to use one of the diverse beam
search methods discussed in paper:
• Almost never, especially if your

language model is good.

P(xt |x1:t−1)

4IVTPI\MX]

1
IE

R�
7G

SV
I�
EG

VS
WW

�%
RR

SX
EX
MS
RW

����

����

����

����

� �� �� ��

*PYIRG] %HIUYEG] -RXIVIWXMRKRIWW

4IVTPI\MX]�ZW��,YQER�7GSVIW��GSVV�!������

99

• Decoding Strategy Recap
• Automatic Detection of Generated Text
• Why is it difficult to answer the question “which decoding strategy is best”?

100

OUTLINE

Why are we interested in systems that
automatically detect generated text?

• Combat the propagation of fake text

• Improve training of text generation models (adversarial training)

• Evaluate the quality of generated text

101

Method for Building a Detector
• Train a simple classifier on top of a bag-of-words representation of the text

• Compute a histogram of the token likelihoods over all the tokens in
the text, then train a simple classier on top of the histogram. http://gltr.io/

• Train a neural network to make a prediction given a text sequence
• Train from scratch

• Fine-tune for classification the same language model that was used for generating the
samples

• Fine-tune some other pre-trained language model on the detection classification task.

P(xt |x1:t−1)

102

http://gltr.io/

Method for Building a Detector
• Train a simple classifier on top of a bag-of-words representation of the text

• Compute a histogram of the token likelihoods over all the tokens in
the text, then train a simple classier on top of the histogram. http://gltr.io/

• Train a neural network to make a prediction given a text sequence
• Train from scratch

• Fine-tune for classification the same language model that was used for generating the
samples

• Fine-tune some other pre-trained language model on the detection classification task.

P(xt |x1:t−1)

103

http://gltr.io/

104

Bidirectional Encoder Representations from Transformers (BERT)

Credit: http://jalammar.github.io/illustrated-bert/

http://jalammar.github.io/illustrated-bert/

Method
• I fine-tuned each classifier on ~200,000 excerpts of web text and ~200,000

excerpts of text that were generated by GPT-2.
• Classifiers were trained to perform binary classification: predicting whether

an excerpt was human-written or machine-generated (from GPT-2 XL).
• In total, I had 6 datasets, each with ~400,000 examples in it:

• Both with and without priming:

105

Examples with priming:
[start] Once upon -> a time there was a beautiful ogre.
[start] Today -> is going to be a great day.
Example without priming:
[start] -> Today it is going to rain cats and dogs.

Method
• I fine-tuned each classifier on ~200,000 excerpts of web text and ~200,000

excerpts of text that were generated by GPT-2.
• Classifiers were trained to perform binary classification: predicting whether

an excerpt was human-written or machine-generated.
• In total, I had 6 datasets, each with ~400,000 examples in it:

• Both with and without priming:
• One where the machine-generated text was sampled using top-k sampling with k=50

• One where the machine-generated text was sampled using nucleus sampling with
p=0.96

• One where the returned by the LM was used without modification (I’ll
refer too this as p=1.0)

P(xt |x1:t−1)

106

QUESTIONS OF INTEREST
➤ How does accuracy vary by

sequence length?

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

0 32 64 96 128 160 192

A
cc

u
ra

cy

Sequence length in tokens

Accuracy of BERT Fine-tuned Discriminator

k40-1wordcond k40-nowordcond
p0.96-1wordcond p0.96-nowordcond
p1.0-1wordcond p1.0-nowordcond

QUESTIONS OF INTEREST
➤ How does accuracy vary by

sequence length?
➤ Why are accuracies so much higher

for top-k than the other strategies?

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

0 32 64 96 128 160 192

A
cc

u
ra

cy

Sequence length in tokens

Accuracy of BERT Fine-tuned Discriminator

k40-1wordcond k40-nowordcond
p0.96-1wordcond p0.96-nowordcond
p1.0-1wordcond p1.0-nowordcond

QUESTIONS OF INTEREST
➤ How does accuracy vary by

sequence length?
➤ Why are accuracies so much higher

for top-k than the other strategies?

QUESTIONS OF INTEREST
➤ How does accuracy vary by

sequence length?
➤ Why are accuracies so much higher

for top-k than the other strategies?
➤ Why are accuracies well above

random chance even for very short
sequence lengths?

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

0 32 64 96 128 160 192

A
cc

u
ra

cy

Sequence length in tokens

Accuracy of BERT Fine-tuned Discriminator

k40-1wordcond k40-nowordcond
p0.96-1wordcond p0.96-nowordcond
p1.0-1wordcond p1.0-nowordcond

For sequences of length 2, BERT
gets 65% accuracy if there is some
priming text, 90% accuracy if not.

CAN YOU DO IT?
Recall that top- (with) means that there are only 40 possible tokens the
language model can generate in the first position.

k k = 40

For each of the following excerpts, predict whether it’s human-written or machine-
generated, assuming top- sampling was used.

1. "The cat"

k

CAN YOU DO IT?
Recall that top- (with) means that there are only 40 possible tokens the
language model can generate in the first position.

k k = 40

For each of the following excerpts, predict whether it’s human-written or machine-
generated, assuming top- sampling was used.

1. "The cat"

2. “Felines are”

k

CAN YOU DO IT?

If we instead primed the language model with a bunch of text for it to continue, the
detection task would be harder because there are more options for the next token.

P(next word | “I am”) vs P(next word | “The monstrous”) look very different.

For each of the following excerpts predict whether it’s human-written or machine-
generated.

BERT trained on generated text that had no priming would predict….
1. “The cat”
machine-generated
2. “Felines are”
 human-written

QUESTIONS OF INTEREST
➤ How does accuracy vary by

sequence length?
➤ Why are accuracies so much higher

for top-k than the other strategies?
➤ Why are accuracies well above

random chance even for very short
sequence lengths?

➤ Why does priming the language
model with some text make a big
difference for top- ?k

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

0 32 64 96 128 160 192

A
cc

u
ra

cy

Sequence length in tokens

Accuracy of BERT Fine-tuned Discriminator

k40-1wordcond k40-nowordcond
p0.96-1wordcond p0.96-nowordcond
p1.0-1wordcond p1.0-nowordcond

QUESTIONS OF INTEREST
➤ How does accuracy vary by

sequence length?
➤ Why are accuracies so much higher

for top-k than the other strategies?
➤ Why are accuracies well above

random chance even for very short
sequence lengths?

➤ Why does priming the language
model with some text make a big
difference for top- ?

➤ Why does top- look so
 different?

k
k

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

0 32 64 96 128 160 192

A
cc

u
ra

cy

Sequence length in tokens

Accuracy of BERT Fine-tuned Discriminator

k40-1wordcond k40-nowordcond
p0.96-1wordcond p0.96-nowordcond
p1.0-1wordcond p1.0-nowordcond

QUESTIONS OF INTEREST
➤ How does accuracy vary by

sequence length?
➤ Why are accuracies so much higher

for top-k than the other strategies?
➤ Why are accuracies well above

random chance even for very short
sequence lengths?

➤ Why does priming the language
model with some text make a big
difference for top- ?

➤ Why does top- look so
 different?

k
k

Distribution of First Tokens in Generated Sequences

Even when using a word of priming, for
top- samples, the 1500 most common
tokens form 100% of the first words in
the generated sequences.

k

TOP-K IS NOT BAD, THE METHODS ARE JUST IMBALANCED
Recall that nucleus sampling chooses a at
every sampling step such that the total
probability of the most likely words is as
close as possible to some constant .

In our experiments we set . This
meant that most of the time the chosen by
nucleus sampling was a lot bigger than the
constant value of we were using for
our top- experiments.

kt

kt
p

p = 0.96
kt

k = 40
k

• Decoding Strategy Recap
• Automatic Detection of Generated Text
• Why is it difficult to answer the question “which decoding strategy is

best”?

118

OUTLINE

Recall that lower accuracy means that humans had a harder time
distinguishing these samples from human-written ones.

119

Human judged quality of generated tex:

120

OUR RELATIVE STRENGTHS
Humans are good at detecting:
➤ Co-reference errors
➤ Contradictions
➤ Falsehoods or statements unlikely to

be true
➤ Incorrect uses of a word
➤ Lack of fluency

Automatic systems are good at detecting:
➤ Differences in token frequencies
➤ Differences in the patterns of token

likelihoods

Neural networks are lazy. They will learn
semantic information (like the properties
listed on the left) if they need to, but if there
is some easier signal to pick up on, they will
take advantage of that first.

TRADEOFFS IN DECODING

Diversity Quality↔

Fool Machines Fool Humans↔

Sample from full distribution Reduce likelihood of already
low likelihood words …….

↔

CONCLUSIONS
➤ Even the best language models aren’t good enough at modeling language for us to

sample from the full distribution and not make bad word choices.
➤ Reducing the weight of words in the tail decreases the chance we’ll make a bad word

choice, but it also reduces the chance we’ll make interesting good word choices.
➤ Sampling from the tail of LM distributions, but sampling from the tail is necessary to

get diverse text.

ANY QUESTIONS?

124

